Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


TB breakthrough could lead to stronger vaccine

A breakthrough strategy to improve the effectiveness of the only tuberculosis vaccine approved for humans provided superior protection against the deadly disease in a pre-clinical test, report scientists at The University of Texas Health Science Center at Houston in Nature Medicine's Advance Online Publication March 1. Their findings resulted from more than 6 years of research funded by the National Institutes of Health (NIH).

Bacille Calmette-Guérin (BCG) provides only partial protection against tuberculosis (TB) in children and is ineffective in adults. As a result, tuberculosis still kills almost 2 million people a year world wide.

“An improved vaccine is widely seen as the best potential method of controlling the disease and is an urgent public health priority,” said Chinnaswamy Jagannath, Ph.D., lead author and associate professor at The University of Texas Medical School at Houston.

BCG is a live but weakened form of a bacterium, M. bovis, which causes tuberculosis in cattle. It is sufficiently related to the human pathogen to stimulate production of specialized immune cells that fight off TB infection when it is injected into a person as a vaccine.

Many attempts have been made to improve the vaccine by incorporating antigens (molecular components of the bacteria) to induce a stronger immune response. However, tuberculosis and BCG have evasive mechanisms that prevent the development of stronger immune responses. Investigators at the UT Health Science Center at Houston investigated mechanisms by which BCG evades immune stimulating mechanisms and devised two means to neutralize them. The scientists used genetically-modified organisms and a drug used for organ transplantation to block BCG’s evasive mechanisms, causing it to induce stronger immune responses. Research collaborator on the genetically-modified organisms project was Subramanian Dhandayuthapani, Ph.D., an assistant professor at The University of Texas Health Science Center at San Antonio’s Medical Research Division in Edinburg, Texas.

This dual approach to the BCG vaccine was associated with a tenfold increase in the number of TB organisms killed and a threefold increase in the duration of protection in tests with an NIH-approved mouse model, Jagannath said.

“The breakthrough is that Dr. Jagannath has countered the ability of TB organisms to subvert immunization,” said Robert L. Hunter Jr., M.D., Ph.D., one of the study’s two senior authors and chair of the Department of Pathology and Laboratory Medicine at the UT Medical School at Houston.

Tuberculosis hides in cells so the antigens are not recognized by the immune system. The BCG vaccine also does the same thing, as previously reported in The Journal of Immunology in 2006 by Jagannath and Christopher Singh, a doctoral student at The University of Texas Graduate School of Biomedical Sciences at Houston.

“Dr. Jagannath hypothesized that a drug, rapamycin, which modulates the movement of particles in cells, would cause BCG antigens to enter pathways leading to improved immunization,” Hunter said. “In addition, Dr. Jagannath had previously demonstrated that genetic deletion of the fpbA gene has similar effects.”

Rapamycin is a drug used to fight cancer and inflammation. In 1992, the Organ Transplantation Center at the UT Medical School was first to conduct rapamycin clinical trials. The UT group led by Barry D. Kahan, M.D., Ph.D., now professor emeritus, showed that rapamycin significantly reduces the frequency of acute kidney transplant rejection.

“Our findings break new ground in vaccine research in general and make improvements for antituberculosis vaccines in particular, because they provide a simple and powerful strategy to enhance vaccine efficiency,” the researchers wrote in the paper. They now plan to add additional antigens to the BCG vaccine to further improve its effectiveness before clinical trials.

Jagannath’s collaborators include research technician Devin Lindsey of the UT Medical School, Dhandayuthapani and two researchers from the Baylor College of Medicine: Yi Xu, Ph.D., instructor, and Tony Eissa, M.D., professor of pulmonary medicine.

The study is titled “Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells.” This study was supported by grants from the National Institute of Allergy and Infectious Diseases to Jagannath and the National Heart, Lung and Blood Institute to Eissa, components of the NIH.

Robert Cahill | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>