Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB breakthrough could lead to stronger vaccine

05.03.2009
A breakthrough strategy to improve the effectiveness of the only tuberculosis vaccine approved for humans provided superior protection against the deadly disease in a pre-clinical test, report scientists at The University of Texas Health Science Center at Houston in Nature Medicine's Advance Online Publication March 1. Their findings resulted from more than 6 years of research funded by the National Institutes of Health (NIH).

Bacille Calmette-Guérin (BCG) provides only partial protection against tuberculosis (TB) in children and is ineffective in adults. As a result, tuberculosis still kills almost 2 million people a year world wide.

“An improved vaccine is widely seen as the best potential method of controlling the disease and is an urgent public health priority,” said Chinnaswamy Jagannath, Ph.D., lead author and associate professor at The University of Texas Medical School at Houston.

BCG is a live but weakened form of a bacterium, M. bovis, which causes tuberculosis in cattle. It is sufficiently related to the human pathogen to stimulate production of specialized immune cells that fight off TB infection when it is injected into a person as a vaccine.

Many attempts have been made to improve the vaccine by incorporating antigens (molecular components of the bacteria) to induce a stronger immune response. However, tuberculosis and BCG have evasive mechanisms that prevent the development of stronger immune responses. Investigators at the UT Health Science Center at Houston investigated mechanisms by which BCG evades immune stimulating mechanisms and devised two means to neutralize them. The scientists used genetically-modified organisms and a drug used for organ transplantation to block BCG’s evasive mechanisms, causing it to induce stronger immune responses. Research collaborator on the genetically-modified organisms project was Subramanian Dhandayuthapani, Ph.D., an assistant professor at The University of Texas Health Science Center at San Antonio’s Medical Research Division in Edinburg, Texas.

This dual approach to the BCG vaccine was associated with a tenfold increase in the number of TB organisms killed and a threefold increase in the duration of protection in tests with an NIH-approved mouse model, Jagannath said.

“The breakthrough is that Dr. Jagannath has countered the ability of TB organisms to subvert immunization,” said Robert L. Hunter Jr., M.D., Ph.D., one of the study’s two senior authors and chair of the Department of Pathology and Laboratory Medicine at the UT Medical School at Houston.

Tuberculosis hides in cells so the antigens are not recognized by the immune system. The BCG vaccine also does the same thing, as previously reported in The Journal of Immunology in 2006 by Jagannath and Christopher Singh, a doctoral student at The University of Texas Graduate School of Biomedical Sciences at Houston.

“Dr. Jagannath hypothesized that a drug, rapamycin, which modulates the movement of particles in cells, would cause BCG antigens to enter pathways leading to improved immunization,” Hunter said. “In addition, Dr. Jagannath had previously demonstrated that genetic deletion of the fpbA gene has similar effects.”

Rapamycin is a drug used to fight cancer and inflammation. In 1992, the Organ Transplantation Center at the UT Medical School was first to conduct rapamycin clinical trials. The UT group led by Barry D. Kahan, M.D., Ph.D., now professor emeritus, showed that rapamycin significantly reduces the frequency of acute kidney transplant rejection.

“Our findings break new ground in vaccine research in general and make improvements for antituberculosis vaccines in particular, because they provide a simple and powerful strategy to enhance vaccine efficiency,” the researchers wrote in the paper. They now plan to add additional antigens to the BCG vaccine to further improve its effectiveness before clinical trials.

Jagannath’s collaborators include research technician Devin Lindsey of the UT Medical School, Dhandayuthapani and two researchers from the Baylor College of Medicine: Yi Xu, Ph.D., instructor, and Tony Eissa, M.D., professor of pulmonary medicine.

The study is titled “Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells.” This study was supported by grants from the National Institute of Allergy and Infectious Diseases to Jagannath and the National Heart, Lung and Blood Institute to Eissa, components of the NIH.

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>