Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targets for treatment of diarrhoeal diseases discovered by RCSI researchers

29.11.2010
A study by researchers in the Royal College of Surgeons in Ireland (RCSI) has uncovered a potential new target for the treatment of a range of intestinal diseases that are associated with diarrhoea. Current medications are often ineffective and can have serious side effects so this discovery gives hope for the development of new treatments for sufferers of intestinal disease.

Worldwide, almost 2 million children die each year as a result of infectious diarrhoea1, however, diarrhoeal diseases are also very common in developed countries. “Diarrhoea associated intestinal disorders, such as irritable bowel syndrome (IBS), Crohn’s disease, colitis, coeliac disease and microbial infections are a major health issue in Ireland.

It is estimated that between 40,000 and 50,000 people visit their local Gastroenterology clinic each year2 seeking treatment for diarrhoea. The cost to the Irish economy in terms of healthcare costs and lost working days is immense,” commented Dr Stephen Keely, senior author on the study and Associate Director of the RCSI Molecular Medicine Lab at Beaumont Hospital.

Explaining the findings of the research study, Dr Keely said: ‘Current treatments for intestinal diseases are not targeted specifically enough and as a result can be ineffective or have serious side effects. Working with researchers in UCD and TCD, we have discovered that a type of protein, known as hydroxylases, play a key role in regulating water and salt transport in the intestines. Our experimental results suggest that by inhibiting the activity of these proteins, diarrhoea can be prevented. The discovery gives us a promising new target for the development of drugs to treat intestinal diseases that have diarrhoea as a primary symptom. Because such drugs would act directly on the cells responsible for controlling water movement in the intestine, they would potentially have better outcomes and reduced side effects for patients,” Dr Keely concluded.

The lead author on the paper is Joseph Ward who conducted the research as part of his PhD studies along with Dr Karen Lawler and Dr Keely from the Molecular Medicine Laboratories in RCSI. The team also collaborated with Prof Padraic Fallon from the Institute of Molecular Medicine, Trinity College Dublin, and Prof Cormac Taylor of the Conway Institute at University College Dublin.

This work was published in the Federation of American Societies for Experimental Biology (FASEB) Journal in October 2010 and was funded by Science Foundation Ireland and the Higher Education Authority’s Programme for Research in Third Level Institutions (PRTLI) Cycle 4, as part of the National Biophotonics Imaging Platform (NBIP) Ireland.

Full bibliographic information
Ward J.B.J., Lawler K., Amu S., Taylor C.T., Fallon P.G., Keely S.J (2010). Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea. FASEB Journal, October 2010

fj.10-166983 http://www.fasebj.org/content/early/2010/10/27/fj.10-166983.abstract

Jane Butler | alfa
Further information:
http://www.rcsi.ie

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>