Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting metabolism to develop new prostate cancer treatments

28.02.2014

UH scientists look at how enzyme functions correlate with disease progression

A University of Houston (UH) scientist and his team are working to develop the next generation of prostate cancer therapies, which are targeted at metabolism.


Daniel Frigo is looking at a cascade of biochemical reactions inside the cell, focusing on an enzyme considered a master regulator of metabolism. Frigo hopes this research will unlock more effective and less harmful prostate cancer treatments.

Credit: Jessie Villarreal

With approximately one out of six American men being diagnosed and nearly a quarter of a million new cases expected this year, prostate cancer is the most common malignancy among men in the U.S. Since prostate cancer relies on androgens for growth and survival, androgen ablation therapies are the standard of care for late-stage disease. While patients initially respond favorably to this course of treatment, most experience a relapse within two years, at which time limited treatment options exist. At this stage, known as castration-resistant prostate cancer, androgen-deprivation therapies are no longer effective, but interestingly, androgen receptor signaling is still active and plays a large role in the progression of the cancer. Because of this, both androgen receptors and the processes downstream of the receptor remain viable targets for therapeutic intervention. Unfortunately, it is unclear which specific downstream processes actually drive the disease and, therefore, what should be targeted.

Daniel Frigo, an assistant professor with the UH Center for Nuclear Receptors and Cell Signaling (CNRCS), has set his sights on a particular cascade of biochemical reactions inside the cell. Focusing specifically on an enzyme known as AMPK, which is considered a master regulator of metabolism, Frigo and his team have demonstrated that androgens have the capacity to take control of this enzyme's molecular signals.

"The androgen signaling cascade is important for understanding early and late-stage prostate cancer progression," Frigo said. "We found that when androgens activated this signaling pathway, it hijacked normal conditions, allowing the tumor to use diverse nutrients to the detriment of the patient. These results emphasize the potential utility of developing metabolic-targeted therapies directed toward this signaling cascade for the treatment of prostate cancer, and we look forward to exploring this and other metabolic pathways further in order to develop the next generation of cancer therapies."

In their studies, Frigo's team showed that prostate cancer cells respond to androgens not only by increasing the breakdown of sugars, a process known as glycolysis that is commonly seen in many cancers, but also escalating the metabolism of fats. While much of the research on cancer metabolism has historically focused on glycolysis, the researchers say it's now becoming apparent that not all cancers depend solely on sugars.

Their findings further indicate that the metabolic changes brought about by the AMPK enzyme result in distinct growth advantages to prostate cancer cells. They say, however, that our understanding of how androgen receptor signaling impacts cellular metabolism and what role this has in disease progression remains incomplete.

The Frigo lab is one of several within the CNRCS concentrated on the role of nuclear receptors in cancer prevention and treatment, and his team has long studied the androgen receptor, which turns on or off various signaling pathways. Frigo believes these pathways hold the potential for better cancer treatments. Targeting these underexplored metabolic pathways for the development of novel therapeutics, Frigo's ultimate goal is to unlock more effective and less harmful cancer treatment alternatives.

With funding from the Department of Defense, National Institutes of Health, Texas Emerging Technology Fund and Golfers Against Cancer, Frigo's latest research appears in Nature's Oncogene. One of the world's leading cancer journals, Oncogene covers all aspects of the structure and function of genes that have the potential to cause cancer and are often mutated or expressed at high levels in tumor cells.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the UH Center for Nuclear Receptors and Cell Signaling

Established in 2009, UH's Center for Nuclear Receptors and Cell Signaling (CNRCS) is a leading component of the UH Health initiative. Led by Jan-Åke Gustafsson, a National Academy of Sciences member and world-renowned expert in the field of nuclear receptors, CNRCS researchers are involved in many aspects of nuclear receptor research, all focused on understanding the roles of these receptors in health and disease. CNRCS researchers are working toward the goal of finding new treatments for an array of significant diseases including cancer, diabetes, metabolic syndrome and neurological disorders. Working from the center's world-class labs, the researchers combine interdisciplinary research and dynamic collaboration with the Texas Medical Center and industry partners.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!

Further reports about: CNRCS Cell Nuclear Receptors androgens develop metabolic metabolism pathways progression prostate receptor

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>