Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting metabolism to develop new prostate cancer treatments

28.02.2014

UH scientists look at how enzyme functions correlate with disease progression

A University of Houston (UH) scientist and his team are working to develop the next generation of prostate cancer therapies, which are targeted at metabolism.


Daniel Frigo is looking at a cascade of biochemical reactions inside the cell, focusing on an enzyme considered a master regulator of metabolism. Frigo hopes this research will unlock more effective and less harmful prostate cancer treatments.

Credit: Jessie Villarreal

With approximately one out of six American men being diagnosed and nearly a quarter of a million new cases expected this year, prostate cancer is the most common malignancy among men in the U.S. Since prostate cancer relies on androgens for growth and survival, androgen ablation therapies are the standard of care for late-stage disease. While patients initially respond favorably to this course of treatment, most experience a relapse within two years, at which time limited treatment options exist. At this stage, known as castration-resistant prostate cancer, androgen-deprivation therapies are no longer effective, but interestingly, androgen receptor signaling is still active and plays a large role in the progression of the cancer. Because of this, both androgen receptors and the processes downstream of the receptor remain viable targets for therapeutic intervention. Unfortunately, it is unclear which specific downstream processes actually drive the disease and, therefore, what should be targeted.

Daniel Frigo, an assistant professor with the UH Center for Nuclear Receptors and Cell Signaling (CNRCS), has set his sights on a particular cascade of biochemical reactions inside the cell. Focusing specifically on an enzyme known as AMPK, which is considered a master regulator of metabolism, Frigo and his team have demonstrated that androgens have the capacity to take control of this enzyme's molecular signals.

"The androgen signaling cascade is important for understanding early and late-stage prostate cancer progression," Frigo said. "We found that when androgens activated this signaling pathway, it hijacked normal conditions, allowing the tumor to use diverse nutrients to the detriment of the patient. These results emphasize the potential utility of developing metabolic-targeted therapies directed toward this signaling cascade for the treatment of prostate cancer, and we look forward to exploring this and other metabolic pathways further in order to develop the next generation of cancer therapies."

In their studies, Frigo's team showed that prostate cancer cells respond to androgens not only by increasing the breakdown of sugars, a process known as glycolysis that is commonly seen in many cancers, but also escalating the metabolism of fats. While much of the research on cancer metabolism has historically focused on glycolysis, the researchers say it's now becoming apparent that not all cancers depend solely on sugars.

Their findings further indicate that the metabolic changes brought about by the AMPK enzyme result in distinct growth advantages to prostate cancer cells. They say, however, that our understanding of how androgen receptor signaling impacts cellular metabolism and what role this has in disease progression remains incomplete.

The Frigo lab is one of several within the CNRCS concentrated on the role of nuclear receptors in cancer prevention and treatment, and his team has long studied the androgen receptor, which turns on or off various signaling pathways. Frigo believes these pathways hold the potential for better cancer treatments. Targeting these underexplored metabolic pathways for the development of novel therapeutics, Frigo's ultimate goal is to unlock more effective and less harmful cancer treatment alternatives.

With funding from the Department of Defense, National Institutes of Health, Texas Emerging Technology Fund and Golfers Against Cancer, Frigo's latest research appears in Nature's Oncogene. One of the world's leading cancer journals, Oncogene covers all aspects of the structure and function of genes that have the potential to cause cancer and are often mutated or expressed at high levels in tumor cells.

About the University of Houston

The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation's best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation's fourth-largest city, UH serves more than 39,500 students in the most ethnically and culturally diverse region in the country. For more information about UH, visit the university's newsroom at http://www.uh.edu/news-events/.

About the UH Center for Nuclear Receptors and Cell Signaling

Established in 2009, UH's Center for Nuclear Receptors and Cell Signaling (CNRCS) is a leading component of the UH Health initiative. Led by Jan-Åke Gustafsson, a National Academy of Sciences member and world-renowned expert in the field of nuclear receptors, CNRCS researchers are involved in many aspects of nuclear receptor research, all focused on understanding the roles of these receptors in health and disease. CNRCS researchers are working toward the goal of finding new treatments for an array of significant diseases including cancer, diabetes, metabolic syndrome and neurological disorders. Working from the center's world-class labs, the researchers combine interdisciplinary research and dynamic collaboration with the Texas Medical Center and industry partners.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly 6,000 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

To receive UH science news via email, sign up for UH-SciNews at http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!

Further reports about: CNRCS Cell Nuclear Receptors androgens develop metabolic metabolism pathways progression prostate receptor

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>