Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting Flight-or-Fight Hormone Response to Combat Heart Failure

25.06.2010
We’ve all experienced the strong heartbeat that accompanies emotions such as fear and rage. But can the body’s natural response to these emotions be used to combat heart failure? Results of a study published online today in the journal Circulation Research present a strong case.

In the study, scientists from the University of Rochester Medical Center found that two experimental drugs have the potential to restore pumping strength to failing hearts in part by harnessing the fight-or-flight response that makes hearts beat stronger.

At the center of this finding is the hormone adrenalin, which normally maintains the heart’s pumping strength and makes the heart beat with greater force during crisis. The newly identified drugs ensure that adrenalin’s ability to drive heartbeat strength is maintained, and not thwarted, as it typically is in heart failure patients. The two therapies, when tested in human-like mouse models of heart failure, were found to slow, and in some cases halt, the progression of the disease.

Alan Smrcka, Ph.D. “Considering the limited efficacy of current drug therapies for heart failure, this discovery is both exciting and promising,” said Burns C. Blaxall, Ph.D., associate professor within the Aab Cardiovascular Research Institute at the Medical Center, and senior author of the study. “We are now taking a closer look at how these compounds compare to standard heart failure therapies, such as beta blockers, to further determine their efficacy in treating the disease.”

When the heart stops pumping as effectively as it should, the body responds by sending more adrenalin to give the heart a pick-me-up. While increased adrenalin initially restores the heart’s vitality, over time heart muscle cells become less and less responsive to high levels of adrenalin, triggering the body to pump even more of the hormone to the heart. Elevated adrenalin is a hallmark of heart failure, and a recent study linked anxiety – which increases adrenalin – in teens and young adults to a higher risk of heart disease or heart attack later in life.

Blaxall’s lab is part of a nationwide effort that has linked adrenalin’s ability to propel heartbeat strength to a key protein, the beta adrenergic receptor. When adrenalin combines with this receptor it orders heart muscle cells to contract with greater speed and force. The problem in heart failure patients is that these receptors are chronically desensitized – they no longer respond to adrenalin, so the heart grows weak and does not pump as forcefully as it should.

“While adrenalin desensitization has been studied extensively, this is the first report of compounds that effectively target this specific process to reduce heart failure,” said Blaxall. The desensitization is caused in large part by elevated levels of a particular enzyme (G-protein-coupled receptor kinase 2 or GRK2) when it interacts with G-proteins.

This research was conducted in collaboration with Alan Smrcka, Ph.D., professor in the Department of Pharmacology & Physiology at the Medical Center whose laboratory discovered compounds that could block GRK2 regulation by G proteins. Smrcka’s research team conducted extensive screening and testing to identify these experimental compounds. Two such compounds, M119 and Gallein, were identified and put to the test.

“In this study we took an entirely new pharmacological approach by altering signaling pathways after the beta adrenergic receptor rather than altering the receptor itself. In this way the actions of adrenalin are modified rather than blocked as with other therapies, such as beta blockers,” said Smrcka. “This novel approach is applicable in heart failure and may be useful in other conditions as well.”

Blaxall’s team found that Gallein not only slowed, but halted heart failure progression when delivered to mice with pre-existing heart failure. Similarly, M119 reduced two characteristics of the disease – strain-related thickening of muscle tissue (hypertrophy) and scar tissue formation (fibrosis). Both compounds partially normalized the force of heart muscle contraction by making sure the beta adrenergic receptors became and remained responsive to adrenalin. This was done by both decreasing overall levels of GRK2 in the heart and by limiting its effectiveness.

M119 and Gallein have been used in a similar way in the past to target the receptor desensitization process that occurs in other conditions, such as chronic pain. For example, Smrcka and his collaborator Jean Bidlack, Ph.D., professor of Pharmacology and Physiology at the Medical Center, have shown M119 can reverse the desensitization of opiate receptors, which in turn increases the efficacy of painkillers such as morphine. M119 and Gallein are not known drugs; they are compounds that act as dyes, or stains, and were previously not known to have any therapeutic activity.

This research addresses a health problem that affects nearly 6 million Americans. The result of underlying problems like coronary artery disease, high blood pressure or heart attack damage, heart failure is the gradual loss of the heart’s ability to pump with enough force to meet the body’s need for blood. Half of patients will not live five years past the day they are diagnosed. The best treatment for a severe heart failure patient is a transplant, but with just over 2,000 transplants done each year and more than 3,000 people on the waiting list at any given time, research like this is needed to find new options for patients.

The current research was funded by the National Heart, Lung and Blood Institute (NHLBI) and the Institute for General Medicine at the National Institutes of Health and the University of Rochester Medical Center. Blaxall’s lab recently received additional funding from the NHLBI to compare the newly identified compounds to current standard therapies for heart failure in human-like mouse models. Blaxall, Smrcka and their team are seeking partnerships to further develop these compounds.

In addition to Blaxall and Smrcka, the following individuals from the University of Rochester Medical Center contributed to this research: Liam Casey, Ph.D., post-doctoral associate and co-first author of the study; Andrew Pistner, medical student and co-first author; post-doctoral associates Stephen Belmonte, Ph.D., and Alessandra Matavel, Ph.D.; Dmitriy Migdalovich, medical student; Olga Stolpnik and Frances Nwakanma, graduate students; Gabriel Vorobiof, M.D., cardiology fellow; Olga Dunaevsky, technician; and Coeli Lopes, Ph.D., assistant professor in the Aab Cardiovascular Research Institute.

For Media Inquiries:
Emily Butler
585-273-1757
Email Emily Butler

Emily Butler | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>