Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New targeted therapy effective in treating advanced prostate cancer

15.04.2010
An experimental drug is showing promise for the treatment of men with an aggressive form of advanced prostate cancer. A new multicenter study has concluded that the targeted therapy MDV3100 is safe and effective for patients with castration-resistant prostate cancer (CRPC), known for its poor prognosis and limited treatment options. The research, led by investigators at Memorial Sloan-Kettering Cancer Center, appears early online and in an upcoming edition of The Lancet.

According to the findings of the Phase 1-2 study, MDV3100 not only shrank patients' tumors, but also reduced serum levels of the tumor marker prostate-specific antigen (PSA), stabilized disease that had spread to soft tissues and the bone, and reduced the number of circulating tumor cells in the blood.

"We were encouraged to see antitumor activity in men whose disease had spread to other parts of the body after either becoming resistant to previous hormone treatments or progressing following chemotherapy," said the study's lead author Howard Scher, MD, Chief of the Genitourinary Oncology Service at Memorial Sloan-Kettering. "These findings strengthen the drug's potential to change the outlook for a group of patients who currently have limited effective treatment options from which to choose."

According to the research, MDV3100 slows tumor growth and induces tumor cells to die in men with CRPC, or hormone-refractory disease, which depends on male hormones to grow, but is unresponsive or becomes resistant to standard therapies used to lower or block those hormones. MDV3100 works by blocking testosterone from binding to the androgen (male hormone) receptor, stopping the movement of the androgen receptor to the nucleus of prostate cancer cells, preventing the receptor from binding to DNA, and inducing cancer cell death, even when the expression of the androgen receptor is elevated.

"This study validates what our preclinical studies have suggested: that sustained androgen receptor signaling drives CRPC and that a substantial number of CRPC tumors that progress despite multiple hormone and chemotherapy treatments remain dependent on androgen receptor signaling for growth," said study co-author, Charles Sawyers, MD, Chair of Memorial Sloan-Kettering's Human Oncology and Pathogenesis Program and a Howard Hughes Medical Institute investigator.

The drug was co-invented by Dr. Sawyers and Michael Jung, PhD, Professor of Chemistry at the University of California, Los Angeles. Their research originally demonstrated that CRPC cells have increased expression of the androgen receptor and that elevated expression of this receptor may contribute to disease progression due to a developed resistance to hormone treatment. Their collaboration led to the discovery of a number of nonsteroidal, small molecule antiandrogen compounds, including MDV3100.

In the current study, 140 patients were treated with doses of MDV3100 ranging from 30 to 600 mg daily. PET imaging, bones scans, and blood tests were used to assess the antitumor effects of the drug, which were observed at all dosages. Investigators reported declines in PSA of at least 50 percent in more than half of the patients and tumor regressions in 22 percent of the patients. Overall, two-thirds of patients had partial remissions or stable disease in tumors that had spread to soft tissue or bone.

The findings also showed that the number of circulating tumor cells fell in 49 percent of patients, and 91 percent of patients who initiated therapy with favorable counts retained favorable counts during treatment. This is important because previous research shows that changes in circulating tumor cell counts after treatment were more predictive of survival than were changes in PSA, with favorable post-treatment counts associated with a 21-month median survival.

The drug was generally well tolerated, with nausea, constipation, diarrhea, and anorexia being the most common mild side effects reported. The most frequently reported Grade 3 side effect at higher doses was fatigue. The researchers determined that the maximum tolerated dose for sustained treatment was 240 mg daily.

Based on the positive results of the current study, a multinational randomized Phase 3 clinical trial has begun to examine MDV3100 versus a placebo for the treatment of men with advanced prostate cancer who were previously treated with chemotherapy. Information about patient eligibility and enrollment can be obtained by visiting www.affirmtrial.com or by calling the AFFIRM study's toll free hotline at 888-782-3256.

The research was supported by Medivation; the Prostate Cancer Foundation, the National Cancer Institute, the Howard Hughes Medical Institute, and the Department of Defense Prostate Cancer Research Program Clinical Consortium (which includes Memorial Sloan-Kettering, the Oregon Health and Science University Knight Cancer Institute, The University of Washington, the Dana-Farber Cancer Institute, and M. D. Anderson Cancer Center).

Memorial Sloan-Kettering Cancer Center is the world's oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Jeanne D’Agostino | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>