Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted oxidation-blocker prevents secondary damage after traumatic brain injury

27.08.2012
Treatment with an agent that blocks the oxidation of an important component of the mitochondrial membrane prevented the secondary damage of severe traumatic brain injury and preserved function that would otherwise have been impaired, according to a research team from the University of Pittsburgh School of Medicine, Graduate School of Public Health and Department of Chemistry in a report published online today in Nature Neuroscience.

Annually, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI) due to traffic accidents, falls, assaults and sports participation, said the study's senior author H¨¹lya Bay¦Ér, M.D., associate professor, Department of Critical Care Medicine, University of Pittsburgh School of Medicine. She added that 52,000 of those injured die, and 85,000 are left with significant disability.

"We don't yet have a specific therapy for TBI, but can provide only supportive care to try to ease symptoms," Dr. Bay¦Ér said. "Our study drug shows promise as a neuroprotective agent that might help address this important public health problem."

For the study, the research team conducted a global assessment of all the phospholipids in rat brain cells. This revealed that damage from TBI was nonrandom and mostly involved cardiolipin, a phospholipid that is found in the membranes that form mitochondria, the cell's powerhouse. They noted that in the healthy animal, only 10 of the 190 cardiolipin species were modified by oxygen, but after a brain injury, the number of oxidized species rose many-fold.

The researchers then developed an agent, called XJB-5-131, which can cross the blood-brain barrier and prevent the oxidation of cardiolipin. Using an established research model of severe TBI, the agent or a placebo was injected into the bloodstream of rats five minutes and again 24 hours after head injury.

In the weeks that followed, treated animals performed akin to normal on tests of balance, agility and motor coordination, learning, and object recognition, while placebo-treated animals showed significant impairment. The results indicate that blocking cardiolipin oxidation by XJB-5-131 protected the brain from cell death.

"The primary head injury might not be that serious," Dr. Bay¦Ér noted. "But that initial injury can set into motion secondary cellular and molecular events that cause more damage to the brain and that ultimately determine the outcome for the patient."

She added that a targeted oxidation-blocker might also be beneficial in the treatment of other neurological disorders, such as Parkinson's disease, amyotrophic lateral sclerosis, or ALS, and stroke.

Co-authors of the paper include lead author Jing Ji, Ph.D., of the University of Pittsburgh's departments of Critical Care Medicine and Environmental and Occupational Health, the Center for Free Radical and Anti-oxidant Health, and the Safar Center for Resuscitation Research; Patrick M. Kochanek, M.D., of the Department of Critical Care Medicine and the Safar Center; Peter Wipf, Ph.D., of the Department of Chemistry; Valerian E. Kagan, Ph.D., of the Department of Environmental and Occupational Health and the Center for Free Radical and Anti-oxidant Health; Anthony E. Kline, Ph.D., of the Department of Physical Medicine and Rehabilitation, as well as other Pitt researchers from the departments of Pediatrics and Neurological Surgery and of the Center for Neuroscience; as well as Noxygen Science Transfer and Diagnostics GmbH, Elzach, Germany.

The study was funded by National Institutes of Health grants NS061817, NS060005, NS076511, HL070755, ES020693, and U19AIO68021, the National Institute for Occupational Safety and Health, and the U.S. Army.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

http://www.upmc.com/media

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>