Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted oxidation-blocker prevents secondary damage after traumatic brain injury

27.08.2012
Treatment with an agent that blocks the oxidation of an important component of the mitochondrial membrane prevented the secondary damage of severe traumatic brain injury and preserved function that would otherwise have been impaired, according to a research team from the University of Pittsburgh School of Medicine, Graduate School of Public Health and Department of Chemistry in a report published online today in Nature Neuroscience.

Annually, an estimated 1.7 million Americans sustain a traumatic brain injury (TBI) due to traffic accidents, falls, assaults and sports participation, said the study's senior author H¨¹lya Bay¦Ér, M.D., associate professor, Department of Critical Care Medicine, University of Pittsburgh School of Medicine. She added that 52,000 of those injured die, and 85,000 are left with significant disability.

"We don't yet have a specific therapy for TBI, but can provide only supportive care to try to ease symptoms," Dr. Bay¦Ér said. "Our study drug shows promise as a neuroprotective agent that might help address this important public health problem."

For the study, the research team conducted a global assessment of all the phospholipids in rat brain cells. This revealed that damage from TBI was nonrandom and mostly involved cardiolipin, a phospholipid that is found in the membranes that form mitochondria, the cell's powerhouse. They noted that in the healthy animal, only 10 of the 190 cardiolipin species were modified by oxygen, but after a brain injury, the number of oxidized species rose many-fold.

The researchers then developed an agent, called XJB-5-131, which can cross the blood-brain barrier and prevent the oxidation of cardiolipin. Using an established research model of severe TBI, the agent or a placebo was injected into the bloodstream of rats five minutes and again 24 hours after head injury.

In the weeks that followed, treated animals performed akin to normal on tests of balance, agility and motor coordination, learning, and object recognition, while placebo-treated animals showed significant impairment. The results indicate that blocking cardiolipin oxidation by XJB-5-131 protected the brain from cell death.

"The primary head injury might not be that serious," Dr. Bay¦Ér noted. "But that initial injury can set into motion secondary cellular and molecular events that cause more damage to the brain and that ultimately determine the outcome for the patient."

She added that a targeted oxidation-blocker might also be beneficial in the treatment of other neurological disorders, such as Parkinson's disease, amyotrophic lateral sclerosis, or ALS, and stroke.

Co-authors of the paper include lead author Jing Ji, Ph.D., of the University of Pittsburgh's departments of Critical Care Medicine and Environmental and Occupational Health, the Center for Free Radical and Anti-oxidant Health, and the Safar Center for Resuscitation Research; Patrick M. Kochanek, M.D., of the Department of Critical Care Medicine and the Safar Center; Peter Wipf, Ph.D., of the Department of Chemistry; Valerian E. Kagan, Ph.D., of the Department of Environmental and Occupational Health and the Center for Free Radical and Anti-oxidant Health; Anthony E. Kline, Ph.D., of the Department of Physical Medicine and Rehabilitation, as well as other Pitt researchers from the departments of Pediatrics and Neurological Surgery and of the Center for Neuroscience; as well as Noxygen Science Transfer and Diagnostics GmbH, Elzach, Germany.

The study was funded by National Institutes of Health grants NS061817, NS060005, NS076511, HL070755, ES020693, and U19AIO68021, the National Institute for Occupational Safety and Health, and the U.S. Army.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

http://www.upmc.com/media

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>