Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Right target, but missing the bulls-eye for Alzheimer's

UCLA researchers discover new point of attack for drug therapy

Alzheimer's disease is the most common cause of late-life dementia. The disorder is thought to be caused by a protein known as amyloid-beta, or Abeta, which clumps together in the brain, forming plaques that are thought to destroy neurons. This destruction starts early, too, and can presage clinical signs of the disease by up to 20 years.

For decades now, researchers have been trying, with limited success, to develop drugs that prevent this clumping. Such drugs require a "target" — a structure they can bind to, thereby preventing the toxic actions of Abeta.

Now, a new study out of UCLA suggests that while researchers may have the right target in Abeta, they may be missing the bull's-eye. Reporting in the Jan. 23 issue of the Journal of Molecular Biology, UCLA neurology professor David Teplow and colleagues focused on a particular segment of a toxic form of Abeta and discovered a unique hairpin-like structure that facilitates clumping.

"Every 68 seconds, someone in this country is diagnosed with Alzheimer's," said Teplow, the study's senior author and principal investigator of the NIH-sponsored Alzheimer's Disease Research Center at UCLA. "Alzheimer's disease is the only one of the top 10 causes of death in America that cannot be prevented, cured or even slowed down once it begins. Most of the drugs that have been developed have either failed or only provide modest improvement of the symptoms. So finding a better pathway for these potential therapeutics is critical."

The Abeta protein is composed of a sequence of amino acids, much like "a pearl necklace composed of 20 different combinations of different colors of pearl," Teplow said. One form of Abeta, Abeta40, has 40 amino acids, while a second form, Abeta42, has two extra amino acids at one end.

Abeta42 has long been thought to be the toxic form of Abeta, but until now, no one has understood how the simple addition of two amino acids made it so much more toxic then Abeta40.

In his lab, Teplow and his colleagues used computer simulations in which they looked at the structure of the Abeta proteins in a virtual world. The researchers first created a virtual Abeta peptide that only contained the last 12 amino acids of the entire 42–amino-acid-long Abeta42 protein. Then, said Teplow, "we just let the molecule move around in a virtual world, letting the laws of physics determine how each atom of the peptide was attracted to or repulsed by other atoms."

By taking thousands of snapshots of the various molecular structures the peptides created, the researchers determined which structures formed more frequently than others. From those, they then physically created mutant Abeta peptides using chemical synthesis.

"We studied these mutant peptides and found that the structure that made Abeta42 Abeta42 was a hairpin-like turn at the very end of the peptide of the whole Abeta protein," Teplow said.

The hairpin turn structure was not previously known in the detail revealed by the researchers, "so we feel our experiments were novel," he said. "Our lab is the first to show that it is this specific turn that accounts for the special ability of Abeta42 to aggregate into clumps that we think kills neurons. Abeta40, the Abeta protein with two less amino acids at the end of the protein, did not do the same thing."

Hopefully, the work of the Teplow laboratory presents what may the most relevant target yet for the development of drugs to fight Alzheimer's disease, the researchers said.

Other authors on the study included Robin Roychaudhuri, Mingfeng Yang, Atul Deshpande, Gregory M. Cole and Sally Frautschy, all of UCLA, and Aleksey Lomakin and George B. Benedek of the Massachusetts Institute of Technology.

Funding for the study was provided by grants from the State of California Alzheimer's Disease Research Fund, a UCLA Faculty Research Grant, the National Institutes of Health (AG027818, NS038328) and the James Easton Consortium for Alzheimer's Drug Discovery and Biomarkers.

The Mary S. Easton Center for Alzheimer's Disease Research at UCLA is part of the UCLA Department of Neurology, which encompasses more than 20 disease-related research programs, along with large clinical and teaching programs. These programs cover brain mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation, and neurovascular disorders. The department ranked first among its peers nationwide in National Institutes of Health funding (2002).

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>