Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right target, but missing the bulls-eye for Alzheimer's

24.01.2013
UCLA researchers discover new point of attack for drug therapy

Alzheimer's disease is the most common cause of late-life dementia. The disorder is thought to be caused by a protein known as amyloid-beta, or Abeta, which clumps together in the brain, forming plaques that are thought to destroy neurons. This destruction starts early, too, and can presage clinical signs of the disease by up to 20 years.

For decades now, researchers have been trying, with limited success, to develop drugs that prevent this clumping. Such drugs require a "target" — a structure they can bind to, thereby preventing the toxic actions of Abeta.

Now, a new study out of UCLA suggests that while researchers may have the right target in Abeta, they may be missing the bull's-eye. Reporting in the Jan. 23 issue of the Journal of Molecular Biology, UCLA neurology professor David Teplow and colleagues focused on a particular segment of a toxic form of Abeta and discovered a unique hairpin-like structure that facilitates clumping.

"Every 68 seconds, someone in this country is diagnosed with Alzheimer's," said Teplow, the study's senior author and principal investigator of the NIH-sponsored Alzheimer's Disease Research Center at UCLA. "Alzheimer's disease is the only one of the top 10 causes of death in America that cannot be prevented, cured or even slowed down once it begins. Most of the drugs that have been developed have either failed or only provide modest improvement of the symptoms. So finding a better pathway for these potential therapeutics is critical."

The Abeta protein is composed of a sequence of amino acids, much like "a pearl necklace composed of 20 different combinations of different colors of pearl," Teplow said. One form of Abeta, Abeta40, has 40 amino acids, while a second form, Abeta42, has two extra amino acids at one end.

Abeta42 has long been thought to be the toxic form of Abeta, but until now, no one has understood how the simple addition of two amino acids made it so much more toxic then Abeta40.

In his lab, Teplow and his colleagues used computer simulations in which they looked at the structure of the Abeta proteins in a virtual world. The researchers first created a virtual Abeta peptide that only contained the last 12 amino acids of the entire 42–amino-acid-long Abeta42 protein. Then, said Teplow, "we just let the molecule move around in a virtual world, letting the laws of physics determine how each atom of the peptide was attracted to or repulsed by other atoms."

By taking thousands of snapshots of the various molecular structures the peptides created, the researchers determined which structures formed more frequently than others. From those, they then physically created mutant Abeta peptides using chemical synthesis.

"We studied these mutant peptides and found that the structure that made Abeta42 Abeta42 was a hairpin-like turn at the very end of the peptide of the whole Abeta protein," Teplow said.

The hairpin turn structure was not previously known in the detail revealed by the researchers, "so we feel our experiments were novel," he said. "Our lab is the first to show that it is this specific turn that accounts for the special ability of Abeta42 to aggregate into clumps that we think kills neurons. Abeta40, the Abeta protein with two less amino acids at the end of the protein, did not do the same thing."

Hopefully, the work of the Teplow laboratory presents what may the most relevant target yet for the development of drugs to fight Alzheimer's disease, the researchers said.

Other authors on the study included Robin Roychaudhuri, Mingfeng Yang, Atul Deshpande, Gregory M. Cole and Sally Frautschy, all of UCLA, and Aleksey Lomakin and George B. Benedek of the Massachusetts Institute of Technology.

Funding for the study was provided by grants from the State of California Alzheimer's Disease Research Fund, a UCLA Faculty Research Grant, the National Institutes of Health (AG027818, NS038328) and the James Easton Consortium for Alzheimer's Drug Discovery and Biomarkers.

The Mary S. Easton Center for Alzheimer's Disease Research at UCLA is part of the UCLA Department of Neurology, which encompasses more than 20 disease-related research programs, along with large clinical and teaching programs. These programs cover brain mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation, and neurovascular disorders. The department ranked first among its peers nationwide in National Institutes of Health funding (2002).

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>