Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to target – and kill – proliferating tumors

14.11.2011
UC San Diego researchers find surprising role for enzyme in tumor cell division and new drug to combat it

Researchers at the University of California, San Diego School of Medicine and the UC San Diego Moores Cancer Center have identified a new drug discovery approach enabling the destruction of the most highly proliferative tumors.

The discovery, published in the Nov. 13 online issue of the journal Nature Medicine, points to an effective, alternative method for killing fast-growing cancer cells without causing some of the negative effects of current therapies.

The scientists, led by David A. Cheresh, PhD, professor of pathology and associate director for translational research at the Moores Cancer Center, used an innovative chemical and biological approach to design a new class of drugs that arrests division in virtually all tumor cells by binding to and altering the structure of an enzyme called RAF.

RAF has been long-studied, but its role in cell division – critical to cell proliferation and tumor growth – was a surprise. "By designing a new class of drugs that changes the shape of RAF, we were able to reveal this previously undiscovered role for RAF in a wide range of highly proliferative tumors," Cheresh said.

Current cancer drugs that target enzymes like RAF are generally designed to interact with the active site of the enzyme. Unfortunately, these drugs often lack specificity, Cheresh said. "They hit many different targets, meaning they can produce undesired side effects and induce dose-limiting toxicity." More of a concern is that tumor cells often develop resistance to this class of drugs rendering them inactive against the cancer.

Cheresh and colleagues pursued development of a new class of RAF inhibitors that do not bind to the active site of the enzyme and so avoid the limitations of current drugs. Instead, this new class, called allosteric inhibitors, changes the shape of the target enzyme and in doing so, renders it inactive. The specific drug tested, known as KG5, singles out RAF in proliferating cells, but ignores normal or resting cells. In affected tumor cells, RAF is unable to associate with the mitotic apparatus to direct cell division, resulting in cell cycle arrest leading to apoptosis or programmed cell death. KG5 in a similar manner effectively interferes with proliferating blood vessels, a process called angiogenesis.

"It's an unusual discovery, one that really challenges current dogma," said Cheresh. "Before this drug was designed, we had no idea RAF could promote tumor cell cycle progression. This may be only one example of how, by designing drugs that avoid the active site of an enzyme, we can identify new and unexpected ways to disrupt the growth of tumors. In essence, we are attacking an important enzyme in a whole new way and thereby discovering new things this enzyme was intended for."

KG5 produced similar results in tests on cancer cell lines, in animal models and in tissue biopsies from human cancer patients. The research team has since developed variants of KG5 that are 100-fold more powerful than the original drug. They hope one of these more powerful compounds will soon enter clinical trials at Moores Cancer Center.

The new RAF targeted compounds are being developed by Amitech Therapeutic Solutions, Inc a start-up company in San Diego.

Co-authors of the study, all from the departments of Pathology or Radiation Oncology at the UC San Diego Moores Cancer Center, are Ainhoa Mielgo, Laetitia Seguin, Miller Huang, Fernanda Camargo, Sudarshan Anand, Aleksandra Franovic, Sara M. Weis, Sunil Advani and Eric Murphy.

Funding for this research came from the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cancer Medicine blood vessel cancer drug cell cycle cell division tumor cells

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>