Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Target identified for rare inherited neurological disease in men

11.08.2014

Scientists show bad androgen receptor impairs body's ability to dispose of damaged cells

Researchers at University of California, San Diego School of Medicine have identified the mechanism by which a rare, inherited neurodegenerative disease causes often crippling muscle weakness in men, in addition to reduced fertility.

The study, published August 10 in the journal Nature Neuroscience, shows that a gene mutation long recognized as a key to the development of Kennedy's disease impairs the body's ability to degrade, remove and recycle clumps of "trash" proteins that may otherwise build up on neurons, progressively impairing their ability to control muscle contraction. This mechanism, called autophagy, is akin to a garbage disposal system and is the only way for the body to purge itself of non-working, misshapen trash proteins.

"We've known since the mid-1990s that Alzheimer's disease, Parkinson's disease and Huntington's disease are caused by the accumulation of misfolded proteins that should have been degraded, but cannot be turned over," said senior author Albert La Spada, MD, PhD and professor of pediatrics, cellular and molecular medicine, and neurosciences. "The value of this study is that it identifies a target for halting the progression of protein build-up, not just in this rare disease, but in many other diseases that are associated with impaired autophagy pathway function."

Of the 400 to 500 men in the U.S. with Kennedy's disease, the slow but progressive loss of motor function results in about 15 to 20 percent of those with the disease becoming wheel-chair bound during later stages of the disease.

Kennedy's disease, also known as spinal and bulbar muscular atrophy, is a recessive X-linked disease men inherit from their mother. Women don't get the disease because they have two copies of the X chromosome. The genetic abnormality causes men to produce a mutant androgen receptor protein, which impairs the body's sensitivity and response to male sex hormones, sometimes resulting in testicular atrophy and enlargement of male breasts.

In experiments with mice, scientists discovered that the mutant androgen receptor protein besides disrupting male reproductive biology also deactivates a protein called transcription factor EB (TFEB) that is believed to be a master regulator of autophagy in nerve and other cell types.

Specifically, the mutant androgen receptor protein in Kennedy's disease binds to TFEB and blocks its ability to mediate the break-down and removal of non-working proteins and aggregated proteins.

"Our study tells us that if we can find a way to keep TFEB working, we likely can prevent this disease and others like it from progressing," La Spada said. "We now have a target for new therapies to treat not only Kennedy's disease, but also many more common neurological disorders."

###

Co-authors include Constanza J. Cortes, Helen C Miranda, Harald Frankowski, Yakup Batlevi, Jessica E. Young, Amy Le and Cassiano Carromeu, UC San Diego; Nishi Ivanov, Bryce L. Sopher and Gwenn A. Garden, University of Washington; and Alysson R. Muotri, UC San Diego and Rady Children's Hospital-San Diego.

Funding for this study was provided by the National Institutes of Health (R01 NS041648, R01 AG033082 and DP2-OD006495-01), Muscular Dystrophy Association and the California Institute for Regenerative Medicine.

Jackie Carr | Eurek Alert!
Further information:
http://www.ucsd.edu

Further reports about: Medicine Spada ability atrophy autophagy mechanism neurological proteins receptor

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>