Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Target identified for rare inherited neurological disease in men


Scientists show bad androgen receptor impairs body's ability to dispose of damaged cells

Researchers at University of California, San Diego School of Medicine have identified the mechanism by which a rare, inherited neurodegenerative disease causes often crippling muscle weakness in men, in addition to reduced fertility.

The study, published August 10 in the journal Nature Neuroscience, shows that a gene mutation long recognized as a key to the development of Kennedy's disease impairs the body's ability to degrade, remove and recycle clumps of "trash" proteins that may otherwise build up on neurons, progressively impairing their ability to control muscle contraction. This mechanism, called autophagy, is akin to a garbage disposal system and is the only way for the body to purge itself of non-working, misshapen trash proteins.

"We've known since the mid-1990s that Alzheimer's disease, Parkinson's disease and Huntington's disease are caused by the accumulation of misfolded proteins that should have been degraded, but cannot be turned over," said senior author Albert La Spada, MD, PhD and professor of pediatrics, cellular and molecular medicine, and neurosciences. "The value of this study is that it identifies a target for halting the progression of protein build-up, not just in this rare disease, but in many other diseases that are associated with impaired autophagy pathway function."

Of the 400 to 500 men in the U.S. with Kennedy's disease, the slow but progressive loss of motor function results in about 15 to 20 percent of those with the disease becoming wheel-chair bound during later stages of the disease.

Kennedy's disease, also known as spinal and bulbar muscular atrophy, is a recessive X-linked disease men inherit from their mother. Women don't get the disease because they have two copies of the X chromosome. The genetic abnormality causes men to produce a mutant androgen receptor protein, which impairs the body's sensitivity and response to male sex hormones, sometimes resulting in testicular atrophy and enlargement of male breasts.

In experiments with mice, scientists discovered that the mutant androgen receptor protein besides disrupting male reproductive biology also deactivates a protein called transcription factor EB (TFEB) that is believed to be a master regulator of autophagy in nerve and other cell types.

Specifically, the mutant androgen receptor protein in Kennedy's disease binds to TFEB and blocks its ability to mediate the break-down and removal of non-working proteins and aggregated proteins.

"Our study tells us that if we can find a way to keep TFEB working, we likely can prevent this disease and others like it from progressing," La Spada said. "We now have a target for new therapies to treat not only Kennedy's disease, but also many more common neurological disorders."


Co-authors include Constanza J. Cortes, Helen C Miranda, Harald Frankowski, Yakup Batlevi, Jessica E. Young, Amy Le and Cassiano Carromeu, UC San Diego; Nishi Ivanov, Bryce L. Sopher and Gwenn A. Garden, University of Washington; and Alysson R. Muotri, UC San Diego and Rady Children's Hospital-San Diego.

Funding for this study was provided by the National Institutes of Health (R01 NS041648, R01 AG033082 and DP2-OD006495-01), Muscular Dystrophy Association and the California Institute for Regenerative Medicine.

Jackie Carr | Eurek Alert!
Further information:

Further reports about: Medicine Spada ability atrophy autophagy mechanism neurological proteins receptor

More articles from Health and Medicine:

nachricht Antioxidants cause malignant melanoma to metastasize faster
09.10.2015 | University of Gothenburg

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>