Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapping the brain orchestra

12.12.2011
Researchers at the Norwegian University of Life Sciences (UMB) have developed a new method for detailed analyses of electrical activity in the brain. The method, recently published in Neuron, can help doctors and researcher to better interpret brain cell signals.

In turn, this may lead to considerable steps forward in terms of interpreting for example EEG measurements, making diagnoses and treatment of various brain illnesses.


A forest of neurons Photo: Hermann Cuntz

Researchers and doctors have been measuring and interpreting electrical activity generated by brain cells since 1875. Doctors have over the years acquired considerable practical skills in relating signal shapes to different brain illnesses such as epilepsy. However, doctors have so far had little knowledge on how these signals are formed in the network of nerve cells.

"Based on methods from physics, mathematics and informatics, as well as computational power from the Stallo supercomputer in Tromsø, we have developed detailed mathematical models revealing the connection between nerve cell activity and the electrical signal recorded by an electrode," says Professor Gaute Einevoll at the Department of Mathematical Sciences and Technology (IMT) at UMB.

Microphone in a crowd
The problem of interpreting electrical signals measured by electrodes in the brain is similar to that of interpreting sound signals measures by a microphone in a crowd of people. Just like people sometimes all talk at once, nerve cells are also sending signals "on top of each other".

The electrode records the sounds from the whole orchestra of nerve cells surrounding it and there are numerous contributors. One cubic millimetre can contain as many as 100,000 nerve cells.

Treble and bass
Similar to bass and treble in a soundtrack, high and low frequency electrical signals are distinguished in the brain.

"This project has focused on the bass - the low frequency signals called "local field potential" or simply LFP. We have found that if nerve cells are babbling randomly on top of each other and out of sync, the electrode's reach is narrow so that it can only receive signals from nerve cells less than about 0.3 millimetres away. However, when nerve cells are speaking simultaneously and in sync, the range can be much wider," Einevoll says.

Large treatment potential
Better understanding of the electrical brain signals may directly influence diagnosing and treatment of illnesses such as epilepsy.

"Electrodes are already being used to measure brain cell activity related to seizures in epilepsy patients, as well as planning surgical procedures. In the future, LFP signals measured by implanted electrodes could detect an impending epilepsy seizure and stop it by injecting a suitable electrical current," Einevoll says.

"A similar technique is being used on many Parkinson's patients, who have had electrodes surgically implanted to prevent trembling," researcher Klas Pettersen at UMB adds..

Einevoll and Pettersen also outline treatment of patients paralysed by spinal cord fracture as another potential area where the method can be used.

"When a patient is paralysed, nerve cells in the cerebral cortex continue to send out signals, but the signals do not reach the muscles, and the patient is thus unable to move arms or legs. By monitoring the right nerve cells and forwarding these signals to for example a robot arm, the patient may be able to steer by his or her thoughts alone," Einevoll says.

The Computational Neuroscience Group at UMB has already established contacts with clinical research groups in the USA and Europe for further research on using the approach in patient treatment.

International interest
Gaute Einevoll recently published the article "Modeling the spatial reach of the LFP" in Neuron, together with his former research fellow Henrik Lindén, currently working at KTH Royal Institute of Technology in Stockholm, Sweden, and researchers Tom Tetzlaff and Klas H. Pettersen at UMB. German researchers Tobias Potjans, professor Sonja Grün and professor Markus Diesmann at Research Center Jülich have also contributed to the study.

The project is mainly financed by the Research Council of Norway's eScience programme and is an example of the increased importance of computational neuroscience in modern brain research.

Einevoll was recently appointed one of four new directors of Organization for Computational Neurosciences, and is also co-leader of the Norwegian national node of INCF (International Neuroinformatics Coordinating Facility).

Both organisations work to promote the use of methods from informatics, mathematics and physics in brain research.

Professor Gaute Einevoll | EurekAlert!
Further information:
http://www.umb.no

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>