Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen-resistant breast cancer reversed when drug paired with anti-malaria agent

13.06.2014

The inexpensive anti-malarial drug hydroxychloroquine (HCQ) reverses resistance to tamoxifen, a widely used breast cancer drug, in mice.

In the June 15 issue of Clinical Cancer Research, investigators from Georgetown Lombardi Comprehensive Cancer Center say adding HCQ to tamoxifen could provide a new treatment option for some women with advanced, postmenopausal estrogen receptor-positive (ER+) breast cancer. The ER+ subtype accounts for an estimated 70 percent of all breast cancers. While many of these women are treated with tamoxifen, which blocks estrogen from fueling the tumor, 50 percent of these cancers will either not respond or will become resistant to tamoxifen over time.

"Tamoxifen resistance when treating breast cancer is a big issue in the clinic, and we believe our findings provide a very promising fix to the problem," says the study's senior investigator, Robert Clarke, PhD, DSc, dean for research at Georgetown University Medical center, and co-director of the breast cancer program at Georgetown Lombardi.

Clarke adds that both drugs are inexpensive, on the market and have a well-defined safety profile.

HCQ was developed to treat malaria, but has since been repurposed as therapy for rheumatoid arthritis and lupus. The study is the first to test HCQ's ability to restore breast cancer cell sensitivity to tamoxifen or to a different anti-estrogen drug known as faslodex.

The research team, led by first author Katherine Cook, PhD, a postdoctoral research fellow in the tumor biology department at Georgetown Lombardi, purposely set out to test HCQ in mice with either tamoxifen or faslodex-resistant human breast cancer cells.

Previous research led by Clarke and Cook found that tamoxifen resistance occurs because a pro-survival pathway is switched on in breast cancer cells. HCQ functions by turning off that very same molecular pathway, Cook says.

The researchers found that the combination of tamoxifen and HCQ is more effective than faslodex and HCQ due to activities within the tumor's microenvironment. "Faslodex and tamoxifen, while both effective as antiestrogen therapies, have different effects on the immune system thus making the combination of faslodex and HCQ less effective," says Cook.

"Many people have been trying combinations of drugs to restore the ability of tamoxifen to fight breast cancer. We believe this pairing is very worthy of additional research, as well as clinical study," she says.

###

The study is supported by a Department of Defense Breast Cancer Research Program Postdoctoral Fellowship (BC112023) and awards from the US Department of Health and Human Services (R01-CA131465 and U54-CA149147).

The authors have no conflicts of interest.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Teber | Eurek Alert!

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>