Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tamoxifen-resistant breast cancer reversed when drug paired with anti-malaria agent

13.06.2014

The inexpensive anti-malarial drug hydroxychloroquine (HCQ) reverses resistance to tamoxifen, a widely used breast cancer drug, in mice.

In the June 15 issue of Clinical Cancer Research, investigators from Georgetown Lombardi Comprehensive Cancer Center say adding HCQ to tamoxifen could provide a new treatment option for some women with advanced, postmenopausal estrogen receptor-positive (ER+) breast cancer. The ER+ subtype accounts for an estimated 70 percent of all breast cancers. While many of these women are treated with tamoxifen, which blocks estrogen from fueling the tumor, 50 percent of these cancers will either not respond or will become resistant to tamoxifen over time.

"Tamoxifen resistance when treating breast cancer is a big issue in the clinic, and we believe our findings provide a very promising fix to the problem," says the study's senior investigator, Robert Clarke, PhD, DSc, dean for research at Georgetown University Medical center, and co-director of the breast cancer program at Georgetown Lombardi.

Clarke adds that both drugs are inexpensive, on the market and have a well-defined safety profile.

HCQ was developed to treat malaria, but has since been repurposed as therapy for rheumatoid arthritis and lupus. The study is the first to test HCQ's ability to restore breast cancer cell sensitivity to tamoxifen or to a different anti-estrogen drug known as faslodex.

The research team, led by first author Katherine Cook, PhD, a postdoctoral research fellow in the tumor biology department at Georgetown Lombardi, purposely set out to test HCQ in mice with either tamoxifen or faslodex-resistant human breast cancer cells.

Previous research led by Clarke and Cook found that tamoxifen resistance occurs because a pro-survival pathway is switched on in breast cancer cells. HCQ functions by turning off that very same molecular pathway, Cook says.

The researchers found that the combination of tamoxifen and HCQ is more effective than faslodex and HCQ due to activities within the tumor's microenvironment. "Faslodex and tamoxifen, while both effective as antiestrogen therapies, have different effects on the immune system thus making the combination of faslodex and HCQ less effective," says Cook.

"Many people have been trying combinations of drugs to restore the ability of tamoxifen to fight breast cancer. We believe this pairing is very worthy of additional research, as well as clinical study," she says.

###

The study is supported by a Department of Defense Breast Cancer Research Program Postdoctoral Fellowship (BC112023) and awards from the US Department of Health and Human Services (R01-CA131465 and U54-CA149147).

The authors have no conflicts of interest.

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Teber | Eurek Alert!

More articles from Health and Medicine:

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

nachricht Scientists create imaging 'toolkit' to help identify new brain tumor drug targets
02.02.2016 | eLife

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

New study: How stable is the West Antarctic Ice Sheet?

09.02.2016 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>