Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking another Shot at RAGE to Tame Alzheimer’s

15.03.2012
Researchers have taken another crack at a promising approach to stopping Alzheimer’s disease that encountered a major hurdle last year.

In research published this week in the Journal of Clinical Investigation, scientists have developed a compound that targets a molecular actor known as RAGE, which plays a central role in mucking up the brain tissue of people with the disease.

Scientists at the University of Rochester Medical Center and the University of Southern California synthesized a compound that stops RAGE in mice – reversing amyloid deposits, restoring healthy blood flow in the brain, squelching inflammation, and making old, sick mice smarter. But the scientists caution that the work has a long way to go before it’s considered as a possible treatment in people.

A phase 2 study in 399 people of another compound designed to stop RAGE – which stands for Receptor for Advanced Glycation Endproducts – was halted prematurely in November when scientists had questions about the compound’s safety at high doses, and after early results indicated that the compound was not helping patients with Alzheimer’s disease.

Benjamin Miller, Ph.D., and Itender Singh, Ph.D.

Nevertheless, developing an effective RAGE inhibitor continues to lure scientists like Berislav Zlokovic, M.D., Ph.D., a neuroscientist formerly with the University of Rochester Medical Center and now at USC. Zlokovic headed the Rochester team that published its results in JCI.

“RAGE remains a phenomenally attractive target for Alzheimer’s therapy,” said Zlokovic.

“The benefits of blocking RAGE are even greater than has been realized. RAGE is central to many mechanisms that wreak havoc in the brains of people with Alzheimer’s disease. It turns out that when you inhibit RAGE, you block molecules central to creating inflammation in the brain, and that is a major problem with Alzheimer’s disease,” added Zlokovic, who is now director of the Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute at USC.

Zlokovic was one of the first scientists to describe RAGE’s involvement in Alzheimer’s disease. Nearly a decade ago, in a paper in Nature Medicine, he showed that RAGE acts as a shuttle, ferrying amyloid beta from the blood into the brain. Since then, stopping RAGE has been an attractive but elusive goal for scientists seeking to create a new line of medications to treat Alzheimer’s disease.

In the latest work, Zlokovic and colleagues screened thousands of compounds for anti-RAGE activity and identified three that seemed promising. Then the team turned to chemists Benjamin Miller, Ph.D., and graduate student Nathan Ross. The pair analyzed the compounds’ molecular structures, then used that knowledge to create dozens of candidates likely to have activity against RAGE.

Several show promise, with one in particular, FPS-ZM1, especially robust at blocking RAGE. Crucially, it’s a very small molecule that crosses the blood-brain barrier and gets into the brain, where it’s needed. That’s not true of many potential RAGE inhibitors, including the three candidates that Zlokovic’s team had identified from the initial screen.

“It’s a very small molecule, but with a very big effect, which is just what you want,” said Miller. “And it’s easy to synthesize.”

The team tested FPS-ZM1 and other compounds in older mice, 15 to 17 months old, which are specially designed to accumulate amyloid beta in their brains quickly. Mice that received the compound:
Had much lowers levels of amyloid beta in the brain – 70 to 80 percent lower – because of the reduced effect of RAGE on amyloid beta;
Had much lower levels of inflammatory cells known as activated microglia – again, levels were reduced approximately 80 percent;
Had improved brain blood flow, almost back to the level of healthy mice.
Had improved learning capabilities that approached the levels of healthy mice.

The researchers were not surprised at the lower levels of amyloid beta, since RAGE allows amyloid beta to cross the brain/body barrier. But the scientists note that FPS-ZM1 affected RAGE’s operations in a number of important additional ways. The molecule lessened the activity of a molecule called NF kappa B, which causes inflammation like that seen in the brains of Alzheimer’s patients, and it reduced the activity of beta secretase, which plays a key role in the creation of amyloid beta.

Most important, the compound shows no evidence of toxicity in mice, even when used at concentrations hundreds of times higher than what would be used in a person.

The research is the culmination of several years of work by more than a dozen scientists at Rochester. The JCI paper has two co-first authors. Rashid Deane, Ph.D., research professor in the Center for Translational Neuromedicine, who headed the studies of blood flow in the brain, and Itender Singh, Ph.D., now a research assistant professor in the Department of Pediatrics, who headed the analysis of beta secretase activity and neuroinflammation. Singh also observed that the compound reduced oxidative stress in the brain, a process central to Alzheimer’s disease.

Other Rochester authors include Senior Instructor Abhay Sagare, Ph.D., Robert Bell, Ph.D., Barbra LaRue, Rachal Love, Sheldon Perry, Nicole Paquette, Richard Deane, Meenakshisundaram Thiyagarajan, Troy Zarcone, and Alan Friedman, Ph.D., assistant professor of Environmental Medicine. Gunter Fritz of the University of Freiburg in Germany also contributed.

Zlokovic is the founder of and an equity holder in Socratech, a company exploring new treatments for neurodegenerative diseases like Alzheimer’s. He also serves as a board member, and he and Deane are consultants to the company as well. The University of Rochester has a small equity interest in Socratech as well.

The work was funded by the National Institute on Aging.

For Media Inquiries:
Tom Rickey
(585) 275-7954
Email Tom Rickey

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>