Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic liver enzyme could result in more effective drugs with fewer side effects

10.10.2012
Medicines could be made to have fewer side effects and work in smaller doses with the help of a new technique that makes drug molecules more resistant to breakdown by the human liver.
Researchers based at Princeton University reported in the journal Science that they created a synthetic enzyme that acts as a catalyst to replace certain hydrogen atoms of a drug molecule with fluorine atoms. This swap stabilizes the molecule and makes it resistant to the liver enzymes that can inactivate a drug or create toxic byproducts.

"Putting fluorine in place of hydrogen in a molecule tends to result in higher potency and lower toxicity," said first author Wei Liu, a graduate student in the laboratory of John Groves, Princeton's Hugh Stott Taylor Chair of Chemistry. Wei worked with Groves and second author Xiongyi Huang, a Princeton chemistry graduate student, as well as with Professor William Goddard III, researcher and lab director Robert Nielsen, and graduate student Mu-Jeng Cheng, all of the California Institute of Technology's Materials and Process Simulation Center.

Substituting fluorine for hydrogen changes the ability of liver enzymes to modify a drug, Groves said. Those enzymes break down medicines and other foreign substances that enter the body resulting in byproducts known as metabolites. Metabolites sometimes interact in harmful ways with liver cells and cause unwanted side effects. Fluorine reduces or eliminates the production of metabolites because the liver enzymes cannot break down the fluorinated drugs, Groves said.

"The strategy is to put fluorine at a site on the molecule where it would block metabolism by liver enzymes," Groves said. In some cases, he said, liver enzymes may not be able to break down the fluorinated drug at all, allowing more of the drug to persist in the body.

The synthetic enzyme could have uses in drug discovery and development including in improving existing drugs such as steroids, Groves explained. Steroids are used as anti-inflammatory drugs as well as in hormone-replacement therapies and birth-control pills. Steroid hormones that might be improved by fluorination include progesterone, premarin and estradiol, all of which are among the top 200 drugs in sales. The Princeton enzyme also could make it easier and less expensive to produce radioactive tracer versions of many drugs, which could be used with medical imaging to understand how and where drugs work in the body.

Tobias Ritter, a Harvard University associate professor of chemistry, said that the Princeton catalyst's novel abilities represent "a quantum leap in the fluorination field." Ritter is familiar with the study but had no role in it.

"The most exciting advance described in the paper is the fundamental reactivity of transforming carbon-hydrogen bonds into carbon-fluorine bonds using a fluoride-oxidant mixture," Ritter said. "Not only were chemists not able to perform such reactions in the past, we are not aware of similar reactions occurring in nature."

The catalyst Liu, Groves and Huang created breaks certain carbon-to-hydrogen bonds on pharmaceutical molecules and replaces the hydrogen with fluorine. Once the catalyst was developed, the Caltech group led by Goddard created computer models to explore its actions.

The synthetic enzyme is similar in structure to a naturally occurring iron-based liver enzyme called cytochrome P450, which normally replaces hydrogen atoms with oxygen atoms. The Princeton catalyst instead uses the metal manganese as a center atom. Because the manganese catalyst mimics the behavior of human liver enzymes, the compounds created when the catalyst is used in drug development are less likely to be broken down by those natural enzymes, Groves said.

The work grew out of the Groves' lab work on cytochrome P450. In 2010, Liu and Groves reported in the Journal of the American Chemistry Society the successful development of a synthetic manganese-based P450 that could replace hydrogen with a chlorine atom instead of an oxygen atom, which made drug molecules more reactive.

Suspecting that this catalyst could replace hydrogen with fluorine as well, Liu tested different fluorine-containing materials and eventually discovered that a combination of silver fluoride and tetrabutylammonium fluoride trihydrate led to drug fluorination. Huang isolated pure crystals of the manganese catalyst and assisted with modeling the molecule using computers.

An advantage for using the catalyst in drug development is that it uses a stable form of fluorine called silver fluoride as a base material instead of fluorine gas, which reacts with numerous other atoms and can be explosive.

"We can use ordinary fluoride salts, almost like the stuff that goes into toothpaste," Groves said.

The paper, "Oxidative Aliphatic C-H Fluorination with Fluoride Ion Catalyzed by a Manganese Porphyrin," was published Sept. 14 in Science, and was supported by grants from the National Science Foundation. The collaboration with Caltech stemmed from the Center for Catalytic Hydrocarbon Functionalization collaborative program funded by the U.S. Department of Energy.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>