Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Down syndrome treatment suggested by Stanford/Packard study in mice

19.11.2009
At birth, children with Down syndrome aren't developmentally delayed. But as they age, these kids fall behind. Memory deficits inherent in Down syndrome hinder learning, making it hard for the brain to collect experiences needed for normal cognitive development.

Now, findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital shed light on the neural basis of memory defects in Down syndrome and suggest a new strategy for treating the defects with medication.

The study, which was conducted in mice, is the first to show that boosting norepinephrine signaling in the brains of mice genetically engineered to mimic Down syndrome improves their cognition. Norepinephrine is a neurotransmitter that nerve cells use to communicate.

"If you intervene early enough, you will be able to help kids with Down syndrome to collect and modulate information," said Ahmad Salehi, MD, PhD, the primary author of the study, which will be published Nov. 18 in Science Translational Medicine. "Theoretically, that could lead to an improvement in cognitive functions in these kids." Salehi, a research health science specialist at the Veterans Affairs Palo Alto Health Care System, was a senior scientist at the School of Medicine when the study was conducted.

Down syndrome is a genetic disorder caused by an extra copy of chromosome 21. Using a mouse model, Salehi and his colleagues are examining exactly how the brain malfunctions in Down syndrome. "Cognition doesn't fail in every aspect; it's failing in a structure-dependent fashion," he said.

For instance, people with Down syndrome struggle to use spatial and contextual information to form new memories, a function that depends on the hippocampus part of the brain. As a result, they have trouble with learning to navigate complex environments such as a new neighborhood or a shopping mall. But they're much better at remembering information linked to colors, sounds or other sensory cues because such sensory memories are coordinated by a different brain structure, the amygdala.

Salehi and his colleagues looked at what could be causing the problems in the hippocampus. Normally, as contextual or relational memories are formed, hippocampal neurons receive norepinephrine from neurons in another part of the brain, the locus coeruleus. The researchers showed that, like humans with Down syndrome, the mice in their experiments experienced early degeneration of the locus coeruleus.

When the locus coeruleus broke down in the study's mice, the animals failed at simple cognitive tests that required them to be aware of changes in the milieu: For instance, the genetically engineered mice, when placed in the strange environment of an unknown cage, did not build nests. That contrasts with normal mice, which typically build nests in such circumstances.

However, by giving norepinephrine precursors to the mice with the Down-syndrome-like condition, the researchers could fix the problem. Only a few hours after they got the drugs, which were converted to norepinephrine in the brain, these mice were just as good at nest-building and related cognitive tests as normal mice. Direct examination of neurons in the hippocampus of the genetically altered mice showed that these cells responded well to norepinephrine.

"We were very surprised to see that, wow, it worked so fast," Salehi said. The drugs' effect also wore off relatively quickly, he added.

Enhancement of norepinephrine signaling has been explored for other neurological conditions. Some of the drugs already on the market for depression and attention deficit hyperactivity disorder target the norepinephrine system; Salehi hopes the new results will spur tests of these drugs for Down syndrome.

Other studies of drug therapies for Down syndrome have targeted a different neurotransmitter, acetylcholine, which also acts at the hippocampus. Based on his team's new findings, Salehi said the ideal medication regimen for improving cognition in Down syndrome will likely improve both norepinephrine and acetylcholine signals.

The new study also provides the first direct link between locus coeruleus breakdown in Down syndrome and a specific gene. People with Down syndrome have an extra copy of a gene called APP on their extra chromosome 21. Other researchers have linked APP to Alzheimer's disease, another disorder in which spatial orientation and memory formation go awry. Salehi and colleagues previously linked APP to the breakdown of neurons that make acetylcholine in these mice.

Salehi's results give "a ray of hope and optimism for the Down syndrome community for the future," said Melanie Manning, MD, director of the Center for Down Syndrome at Lucile Packard Children's Hospital. Manning was not a part of Salehi's research team. "It's very exciting," she said. "We still have a long way to go, but these are very interesting results."

Salehi's collaborators at Stanford included life-science research assistants Mehrdad Faizi, PhD, Janice Valletta and R. Takimoto-Kimura; research associates Damien Colas, PhD, and Alexander Kleschevnikov, PhD; Jessenia Laguna, visiting fellow; Mehrdad Shamloo, PhD, senior research scientist; and former director of the Stanford Institute for Neuro-Innovation & Translational Neurosciences William Mobley, MD, PhD, who is now at the University of California-San Diego. Mobley had also been director of Packard Children's Center for Down Syndrome.

The research was funded by grants from the National Institutes of Health, the Larry L. Hillblom Foundation, the Down Syndrome Research and Treatment Foundation, the Thrasher Research Fund, Adler Foundation and the Alzheimer Association. The team has filed a patent application related to the research.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Ranked as one of the best pediatric hospitals in the nation by U.S.News & World Report, Lucile Packard Children's Hospital at Stanford is a 272-bed hospital devoted to the care of children and expectant mothers. Providing pediatric and obstetric medical and surgical services and associated with the Stanford University School of Medicine, Packard Children's offers patients locally, regionally and nationally the full range of health-care programs and services — from preventive and routine care to the diagnosis and treatment of serious illness and injury. For more information, visit http://www.lpch.org.

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>