Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Down syndrome treatment suggested by Stanford/Packard study in mice

19.11.2009
At birth, children with Down syndrome aren't developmentally delayed. But as they age, these kids fall behind. Memory deficits inherent in Down syndrome hinder learning, making it hard for the brain to collect experiences needed for normal cognitive development.

Now, findings from the Stanford University School of Medicine and Lucile Packard Children's Hospital shed light on the neural basis of memory defects in Down syndrome and suggest a new strategy for treating the defects with medication.

The study, which was conducted in mice, is the first to show that boosting norepinephrine signaling in the brains of mice genetically engineered to mimic Down syndrome improves their cognition. Norepinephrine is a neurotransmitter that nerve cells use to communicate.

"If you intervene early enough, you will be able to help kids with Down syndrome to collect and modulate information," said Ahmad Salehi, MD, PhD, the primary author of the study, which will be published Nov. 18 in Science Translational Medicine. "Theoretically, that could lead to an improvement in cognitive functions in these kids." Salehi, a research health science specialist at the Veterans Affairs Palo Alto Health Care System, was a senior scientist at the School of Medicine when the study was conducted.

Down syndrome is a genetic disorder caused by an extra copy of chromosome 21. Using a mouse model, Salehi and his colleagues are examining exactly how the brain malfunctions in Down syndrome. "Cognition doesn't fail in every aspect; it's failing in a structure-dependent fashion," he said.

For instance, people with Down syndrome struggle to use spatial and contextual information to form new memories, a function that depends on the hippocampus part of the brain. As a result, they have trouble with learning to navigate complex environments such as a new neighborhood or a shopping mall. But they're much better at remembering information linked to colors, sounds or other sensory cues because such sensory memories are coordinated by a different brain structure, the amygdala.

Salehi and his colleagues looked at what could be causing the problems in the hippocampus. Normally, as contextual or relational memories are formed, hippocampal neurons receive norepinephrine from neurons in another part of the brain, the locus coeruleus. The researchers showed that, like humans with Down syndrome, the mice in their experiments experienced early degeneration of the locus coeruleus.

When the locus coeruleus broke down in the study's mice, the animals failed at simple cognitive tests that required them to be aware of changes in the milieu: For instance, the genetically engineered mice, when placed in the strange environment of an unknown cage, did not build nests. That contrasts with normal mice, which typically build nests in such circumstances.

However, by giving norepinephrine precursors to the mice with the Down-syndrome-like condition, the researchers could fix the problem. Only a few hours after they got the drugs, which were converted to norepinephrine in the brain, these mice were just as good at nest-building and related cognitive tests as normal mice. Direct examination of neurons in the hippocampus of the genetically altered mice showed that these cells responded well to norepinephrine.

"We were very surprised to see that, wow, it worked so fast," Salehi said. The drugs' effect also wore off relatively quickly, he added.

Enhancement of norepinephrine signaling has been explored for other neurological conditions. Some of the drugs already on the market for depression and attention deficit hyperactivity disorder target the norepinephrine system; Salehi hopes the new results will spur tests of these drugs for Down syndrome.

Other studies of drug therapies for Down syndrome have targeted a different neurotransmitter, acetylcholine, which also acts at the hippocampus. Based on his team's new findings, Salehi said the ideal medication regimen for improving cognition in Down syndrome will likely improve both norepinephrine and acetylcholine signals.

The new study also provides the first direct link between locus coeruleus breakdown in Down syndrome and a specific gene. People with Down syndrome have an extra copy of a gene called APP on their extra chromosome 21. Other researchers have linked APP to Alzheimer's disease, another disorder in which spatial orientation and memory formation go awry. Salehi and colleagues previously linked APP to the breakdown of neurons that make acetylcholine in these mice.

Salehi's results give "a ray of hope and optimism for the Down syndrome community for the future," said Melanie Manning, MD, director of the Center for Down Syndrome at Lucile Packard Children's Hospital. Manning was not a part of Salehi's research team. "It's very exciting," she said. "We still have a long way to go, but these are very interesting results."

Salehi's collaborators at Stanford included life-science research assistants Mehrdad Faizi, PhD, Janice Valletta and R. Takimoto-Kimura; research associates Damien Colas, PhD, and Alexander Kleschevnikov, PhD; Jessenia Laguna, visiting fellow; Mehrdad Shamloo, PhD, senior research scientist; and former director of the Stanford Institute for Neuro-Innovation & Translational Neurosciences William Mobley, MD, PhD, who is now at the University of California-San Diego. Mobley had also been director of Packard Children's Center for Down Syndrome.

The research was funded by grants from the National Institutes of Health, the Larry L. Hillblom Foundation, the Down Syndrome Research and Treatment Foundation, the Thrasher Research Fund, Adler Foundation and the Alzheimer Association. The team has filed a patent application related to the research.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Ranked as one of the best pediatric hospitals in the nation by U.S.News & World Report, Lucile Packard Children's Hospital at Stanford is a 272-bed hospital devoted to the care of children and expectant mothers. Providing pediatric and obstetric medical and surgical services and associated with the Stanford University School of Medicine, Packard Children's offers patients locally, regionally and nationally the full range of health-care programs and services — from preventive and routine care to the diagnosis and treatment of serious illness and injury. For more information, visit http://www.lpch.org.

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>