Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switched on new nanotechnology paints for hospitals could kill superbugs

10.09.2008
New nanotechnology paints for walls, ceilings, and surfaces could be used to kill hospital superbugs when fluorescent lights are switched on, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

The new paints contain tiny particles of titanium dioxide, which is the dazzling white compound often used as a brightener in commercial paints. It will also be familiar to tennis fans as the powder used for the white lines to mark out the courts at Wimbledon.

Scientists have discovered that extremely small, nanoparticle-sized forms of titanium dioxide can kill bacteria and destroy dirt when they absorb ultraviolet light (UV) energy from the sun. They produce active molecules which clean up the painted surfaces.

"It would be best if the titanium was antibacterial at wavelengths of light that you find indoors, such as fluorescent light, so that paints containing the nanoparticles could be used in hospitals and other places where a clean environment is important," said Lucia Caballero from Manchester Metropolitan University, UK.

The researchers looked at the survival of the food poisoning bacterium Escherichia coli on different formulations of paints containing the titanium nanoparticles under different types and intensities of lights. "We found that paints containing titanium dioxide are more successful at killing bacteria if the concentration of the nanoparticles is stronger than in normal paint. Our best results showed that all the E. coli were killed under ordinary fluorescent lights," said Lucia Caballero.

"However, other common additives in paints, such as calcium carbonate, silica or talc decreased the antibacterial efficiency of the paint. If calcium carbonate was present the kill rate dropped by up to 80%," said Lucia Caballero. "Our tests on a commercially available paint showed that the ability of the paint to inactivate bacteria was massively reduced compared with a paint formulation which did not contain such

additives."

With rising concern about the spread of hospital superbugs, healthcare trusts are increasingly looking to find better ways to maintain hygienic standards in hospitals. The same concerns are driving developments in the food industry and in pharmaceutical companies. These new nanoparticle paints could provide a simple and cost-effective solution.

"Facilities such as bathrooms and child care facilities, public conveniences and domestic bathrooms would all benefit from good hygiene control," said Lucia Caballero. "In all these places, surface hygiene could be improved by the action of fluorescent light on catalytic surfaces such as paints containing nanotitanium. This would slow down contamination and save on the costs of cleaning maintenance."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>