Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish researchers’ discovery promises unique medicine for treatment of chronic and diabetic wounds

29.05.2012
A unique new medicine that can start and hasten healing of diabetic and other chronic sores is being developed at Umeå University in Sweden. After several years of successful experimental research, it is now ready for clinical testing.

Behind this new medicine is a group of researchers at the Department of Medical Chemistry and Biophysics who have made the unique finding that the protein plasminogen is a regulator that initiates and hastens wound healing by triggering the inflammatory reaction. Their discovery is now being published in the highly ranked journal Blood.

“Today we have the knowledge needed to develop a medicine,” says Professor Tor Ny, one of the authors of the article. “The bulk of the preclinical research has been completed, and we have been in contact with the Medical Products Agency to discuss a program for clinical testing.”

Plasminogen is a well-known plasma protein that is produced in the liver and found in all bodily fluids. The Umeå researchers have re-evaluated its role and managed to show that the concentration of plasminogen increases dramatically in and around wounds, which is an important signal to start the inflammatory reaction required for healing. In diabetic sores the level of plasminogen does not rise in the same way, and this seems to be the reason why these sores do not heal. In mice and rats the researchers were able to show that the healing process starts immediately when plasminogen is injected into the sore, which then heals fully.

A cell line for producing plasminogen on a larger scale has also been developed, and the goal is to be able to start clinical testing as soon as funding can be arranged. The researchers have high hopes, as plasminogen is an endogenous substance that can be assumed not to produce side effects.

The need for a biological pharmaceutical for treating intractable wounds is pressing indeed. Diabetic sores that heal poorly or not at all are the most severe type of chronic sores, affecting millions of people annually. Many of the roughly 350 million diabetes patients in the world develop foot ulcers, and in 10-15 million cases this ultimately leads to amputation. Today’s treatment of diabetic ulcers consists primarily of traditional wound care, with compresses and bandages; there is no effective medication.

The Umeå researchers are initially concentrating on diabetic wounds, but the medicine has great potential for working on other types of stubborn sores. This includes damaged eardrums and periodontitis. The new pharmaceutical has moreover been shown to be helpful in combatting antibiotic-resistant bacteria (MRSA).

Reference
Yue Shen, Yongzhi Guo, Peter Mikus, Rima Sulniute, Malgorzata Wilczynska, Tor Ny, Jinan Li: Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds Blood. 2012 May 4. [Epub ahead of print]

For more information, please contact Professor Tor Ny: mobile: +46 (0)73-620 50 65; e-mail tor.ny@medchem.umu.se

Hans Fällman | idw
Further information:
http://www.umu.se
http://www.vr.se

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>