Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweat glands play major role in healing human wounds, U-M research shows

20.11.2012
As poor wound healing from diabetic ulcers and other ailments takes heavy toll on healthcare costs, U-M findings pave way for new efficient therapies

Turns out the same glands that make you sweat are responsible for another job vital to your health: they help heal wounds.

Human skin is rich with millions of eccrine sweat glands that help your body cool down after a trip to the gym or on a warm day. These same glands, new University of Michigan Health System research shows, also happen to play a key role in providing cells for recovering skin wounds – such as scrapes, burns and ulcers.

The findings were released online ahead of print in the American Journal of Pathology.

“Skin ulcers – including those caused by diabetes or bed sores – and other non-healing wounds remain a tremendous burden on health services and communities around the world,” says lead author Laure Rittié, Ph.D., research assistant professor of dermatology at the University of Michigan Medical School.

“Treating chronic wounds costs tens of billions of dollars annually in the United States alone, and this price tag just keeps rising. Something isn’t working.”

Now, U-M researchers believe they have discovered one of the body’s most powerful secret weapons in healing.

Laure Rittié“By identifying a key process of wound closure, we can examine drug therapies with a new target in mind: sweat glands, which are very under-studied,” Rittié says. “We’re hoping this will stimulate research in a promising, new direction.”

Previous understanding of wound closure was that new skin cells originate from hair follicles and from intact skin at the edge of the wound. The U-M findings demonstrate that cells arise from beneath the wound, and suggest that human eccrine sweat glands also store an important reservoir of adult stem cells that can quickly be recruited to aid wound healing.

“It may be surprising that it’s taken until now to discover the sweat glands’ vital role in wound repair,” Rittié says. “But there’s a good reason why these specific glands are under-studied – eccrine sweat glands are unique to humans and absent in the body skin of laboratory animals that are commonly used for wound healing research.

“We have discovered that humans heal their skin in a very unique way, different from other mammals,” Rittié adds. “The regenerative potential of sweat glands has been one of our body’s best-kept secrets. Our findings certainly advance our understanding of the normal healing process and will hopefully pave the way for designing better, targeted therapies.”

Additional Authors: Dana L. Sachs, M.D.; Jeffrey S. Orringer, M.D.; John J. Voorhees, M.D.; and Gary J. Fisher, Ph.D., all of the University of Michigan Department of Dermatology.

Funding: U-M Dermatology Research Fund, the Dermatology Foundation, and the National Institutes of Health (NIH/NIAMS grant K01-AR059678)

Reference: http://dx.doi.org/10.1016/j.ajpath.2012.09.019

NOTICE: Except where otherwise noted, all articles are published under a Creative Commons Attribution 3.0 license. You are free to copy, distribute, adapt, transmit, or make commercial use of this work as long as you attribute the University of Michigan Health System as the original creator and include a link to this article.

Beata Mostafavi | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>