Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweat glands play major role in healing human wounds, U-M research shows

20.11.2012
As poor wound healing from diabetic ulcers and other ailments takes heavy toll on healthcare costs, U-M findings pave way for new efficient therapies

Turns out the same glands that make you sweat are responsible for another job vital to your health: they help heal wounds.

Human skin is rich with millions of eccrine sweat glands that help your body cool down after a trip to the gym or on a warm day. These same glands, new University of Michigan Health System research shows, also happen to play a key role in providing cells for recovering skin wounds – such as scrapes, burns and ulcers.

The findings were released online ahead of print in the American Journal of Pathology.

“Skin ulcers – including those caused by diabetes or bed sores – and other non-healing wounds remain a tremendous burden on health services and communities around the world,” says lead author Laure Rittié, Ph.D., research assistant professor of dermatology at the University of Michigan Medical School.

“Treating chronic wounds costs tens of billions of dollars annually in the United States alone, and this price tag just keeps rising. Something isn’t working.”

Now, U-M researchers believe they have discovered one of the body’s most powerful secret weapons in healing.

Laure Rittié“By identifying a key process of wound closure, we can examine drug therapies with a new target in mind: sweat glands, which are very under-studied,” Rittié says. “We’re hoping this will stimulate research in a promising, new direction.”

Previous understanding of wound closure was that new skin cells originate from hair follicles and from intact skin at the edge of the wound. The U-M findings demonstrate that cells arise from beneath the wound, and suggest that human eccrine sweat glands also store an important reservoir of adult stem cells that can quickly be recruited to aid wound healing.

“It may be surprising that it’s taken until now to discover the sweat glands’ vital role in wound repair,” Rittié says. “But there’s a good reason why these specific glands are under-studied – eccrine sweat glands are unique to humans and absent in the body skin of laboratory animals that are commonly used for wound healing research.

“We have discovered that humans heal their skin in a very unique way, different from other mammals,” Rittié adds. “The regenerative potential of sweat glands has been one of our body’s best-kept secrets. Our findings certainly advance our understanding of the normal healing process and will hopefully pave the way for designing better, targeted therapies.”

Additional Authors: Dana L. Sachs, M.D.; Jeffrey S. Orringer, M.D.; John J. Voorhees, M.D.; and Gary J. Fisher, Ph.D., all of the University of Michigan Department of Dermatology.

Funding: U-M Dermatology Research Fund, the Dermatology Foundation, and the National Institutes of Health (NIH/NIAMS grant K01-AR059678)

Reference: http://dx.doi.org/10.1016/j.ajpath.2012.09.019

NOTICE: Except where otherwise noted, all articles are published under a Creative Commons Attribution 3.0 license. You are free to copy, distribute, adapt, transmit, or make commercial use of this work as long as you attribute the University of Michigan Health System as the original creator and include a link to this article.

Beata Mostafavi | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>