Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival without lasting damage

15.02.2016

Anyone who survives the rare blood disorder TTP is then left fighting the lingering neurological damage. So this does not remain the case, the Department of Hematology of Bern University Hospital is developing a faster treatment that is less likely to result in a relapse.

The rare and life-threatening blood disorder thrombotic thrombocytopenic purpura (TTP) mainly affects young, otherwise healthy people aged between 20 and 50. Only 2-3 people out of every million will fall ill with TTP, which forms blood clots in the small blood vessels.


Schematic presentation of platelets (purple) which stick to the over-long Von Willebrand factor (brown).

Massachusetts Medical Society


Blood smear of patient with TTP under the microscope.

Department of Hematology, Inselspital, Bern University Hospital

The decreased blood flow damages the heart, brain and kidneys in particular and can lead to strokes and heart attacks. The disorder mainly affects women and will lead to death in over 90 percent of cases if it is not treated within a few days.

Autoimmune disorder with lasting consequences

TTP is an autoimmune disorder with antibodies against the ADAMTS13 protein enzyme. Through the acute lack of ADAMTS13, the von Willebrand factor is no longer regulated in terms of size and blood platelets spontaneously adhere to it. For this reason, the standard treatment at the moment consists of daily plasma exchange (removal of antibodies, supply of ADAMTS13) and immunosuppressive drugs.

Despite the treatment, 10-20 percent of patients die during the acute episode. More than half of patents are left with neurological damage as a result of the decreased blood flow, such as impaired concentration, attention deficit and visual problems, numbness in an arm or leg and paralysis of these. With almost half, the disorder flares up again within 1-2 years.

Rapid control of the disorder with lower rate of relapses

In a multicentre clinical study (CH, AU, IT, BE, USA) with the involvement of the Department of Hematology of the Bern University Hospital, it has now been possible to treat TTP with an anti-von Willebrand factor nanobody, which prevents the blood platelets from adhering. As a result, TTP can be forced back within a few days and the organs are protected from further decreased blood flow – which prevents at least some of the remaining damage.

75 patients were involved in the study. Together with the standard treatment, 36 patients received the new active ingredient and the 39 patients of the control group received a placebo. Bern-based haematologist Johanna Kremer Hovinga analysed all the blood samples and found that in 95 percent of patients, who received the new active ingredient, the acute phase of TTP had ended after scarcely 4 days, making this almost 40 percent faster than with the traditional treatment.

The side-effects were generally comparable, but light bleeding occurred more frequently with the new active ingredient (54% of patients in comparison with 38% with the placebo). As long as the medication was given, no patient had a relapse, although the autoimmune reaction continued to be active in at least 20 percent of patients. Another advantage: Because the new active ingredient can be injected subcutaneously, it was possible to treat patients on an outpatient basis after just a few days.

Long-term special subject at the Bern University Hospital and Bern University

The Department of Hematology at the Bern University Hospital and the University of Bern have been researching TTP and ADAMTS13 since the mid-1990s and have published extensive work in this. This study in the New England Journal of Medicine is the first major randomised patient study in the field of the rare disorder of TTP and shows a promising new treatment approach based on expanded knowledge of TTP.

Contact: Prof. Dr.med. Johanna Kremer Hovinga Strebel, senior consultant, Department of Hematology and Central Hematology Laboratory, Bern University Hospital, +41 31 632 02 65.

Weitere Informationen:

http://www.insel.ch/en/
http://www.nejm.org/doi/full/10.1056/NEJMoa1505533

Monika Kugemann | Universitätsspital Bern

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>