Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Some, Surgical Site Infections Are in the Genes

27.02.2013
University of Utah study uses unique database to find ties to SSIs in families

An estimated 300,000 U.S. patients get surgical site infections every year, and while the causes are varied, a new University of Utah study suggests that some who get an infection can blame it partly on their genes.

In the Feb. 19, 2013, online edition of the journal Wound Repair and Regeneration, researchers from the University’s School of Medicine show through a study of families in the Utah Population Database (UPD) that surgical site infections (SSI) appear to have a significant genetic connection, even in extended relatives. If further investigation bears out these findings, people who are genetically at risk for SSIs might be identified through personal genome analysis before surgery, according to Harriet W. Hopf, M.D., professor of anesthesiology at the University of Utah School of Medicine who is corresponding author on the study.

“Our research showed that people with surgical site infections are more likely to be related to one another than expected in the Utah population” Hopf says. “If that’s the case, individual genome analysis might benefit many people if SSIs appear to run in their families. This type of personalized health care could be available in a few years, and with the unparalleled resource of the Utah Population Database (UPDB) and its world-class genetics research, the University of Utah is positioned to make it happen.”

It’s estimated that SSIs occur in approximately 5 percent of U.S. surgical procedures, resulting in longer hospitalizations and adding approximately $1 billion a year to the nation’s health care bill. Infections can occur on the outer layer of skin at the surgical site or in deeper tissue below the skin.

Hopf, who’s also associate dean for academic affairs in the School of Medicine, conducted the research with Lisa A. Cannon-Albright, Ph.D., a genetic epidemiologist, professor of internal medicine and senior author on the study, and former U of U medical student and first author, James P. Lee, M.D.

Through the UPDB, a remarkable storehouse of genealogical records, public health data, and records from hospitals and ambulatory surgery centers, the researchers combed the records of 651 University of Utah Hospital patients who had suffered SSIs based on an internationally recognized medical code. (The researchers did not learn the names of the patients.) As controls, they used randomly selected U of U Hospital patients with the same birth year, birthplace, and sex as the group that did have infections. Only people with both parents, all four grandparents, and at least six of eight great-grandparents in the UPDB were analyzed in either group.

A test for excess familial relatedness, the Genealogical Index of Familiality (GIF), was performed to determine whether patients with SSIs were more related than expected, as measured by average relatedness in the randomly selected, matched controls. To rule out the possibility of shared environmental influences on predispositions to SSIs, the researchers also performed the analysis while ignoring first- and second-degree relationships (representing individuals who might be living together or in close proximity, such as parents, siblings, and offspring, and thus sharing non-genetic risk factors), according to Cannon-Albright.

The results might be considered surprising, showing that SSIs occurred more frequently than expected among, for example, third cousins and more distant relatives of individuals in the study. “People who’d had an SSI were significantly more related than we would have thought,” she says. “The results indicate a strong genetic contribution to SSIs.”

Hopf has researched SSIs for much of her career, suspecting that a mutation in a gene that makes superoxide, a compound released as part of the body’s inflammatory response to invading pathogens, might cause a predisposition to the infections. The mutation could render this gene, p-47 phox, less efficient at making superoxide, leaving people more susceptible to SSIs.

Upon coming to the University in 2006, Hopf saw an ideal opportunity to investigate her hypothesis by taking advantage of the UPDB and the school’s genetics expertise. “The chance to collaborate with people from different disciplines makes the University of Utah an exceptional place for this kind of research,” she says.

For her next step, Hopf wants to draw blood samples from members of high-risk families identified in this study to investigate whether p-47 phox or other genes might predispose people to SSIs.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>