Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super-sticky 'ultra-bad' cholesterol revealed in people at high risk of heart disease

Scientists from the University of Warwick have discovered why a newly found form of cholesterol seems to be 'ultra-bad', leading to increased risk of heart disease. The discovery could lead to new treatments to prevent heart disease particularly in people with type 2 diabetes and the elderly.

The research, funded by the British Heart Foundation (BHF), found that 'ultrabad' cholesterol, called MGmin-low-density lipoprotein (LDL), which is more common in people with type 2 diabetes and the elderly, appears to be 'stickier' than normal LDL. This makes it more likely to attach to the walls of arteries. When LDL attaches to artery walls it helps form the dangerous 'fatty' plaques' that cause coronary heart disease (CHD).

CHD is the condition behind heart attacks, claiming 88,000 lives in the UK every year (1).

The researchers made the discovery by creating human MGmin-LDL in the laboratory, then studying its characteristics and interactions with other important molecules in the body.

They found that MGmin-LDL is created by the addition of sugar groups to 'normal' LDL – a process called glycation – making LDL smaller and denser. By changing its shape, the sugar groups expose new regions on the surface of the LDL. These exposed regions are more likely to stick to artery walls, helping to build fatty plaques. As fatty plaques grow they narrow arteries - reducing blood flow - and they can eventually rupture, triggering a blood clot that causes a heart attack or stroke.

The discovery might also explain why metformin, a widely prescribed type 2 diabetes drug, seems to lead to reduced heart disease risk. Metformin is known to lower blood sugar levels, and this new research shows it may reduce the risk of CHD by blocking the transformation of normal LDL to the more 'sticky' MGmin-LDL.

Dr Naila Rabbani, Associate Professor of Experimental Systems Biology at Warwick Medical School, who led the study, said:

"We're excited to see our research leading to a greater understanding of this type of cholesterol, which seems to contribute to heart disease in diabetics and elderly people. Type 2 diabetes is a big issue – of the 2.6 million diabetics in the UK, around 90 per cent have type 2. It's also particularly common in lower income groups and South Asian communities. (2, 3)

"The next challenge is to tackle this more dangerous type of cholesterol with treatments that could help neutralise its harmful effects on patients' arteries."

Dr Shannon Amoils, Research Advisor at the BHF, which funded the study, said:

"We've known for a long time that people with diabetes are at greater risk of heart attack and stroke. There is still more work to be done to untangle why this is the case, but this study is an important step in the right direction.

"This study shows how the make-up and the shape of a type of LDL cholesterol found in diabetics could make it more harmful than other types of LDL. The findings provide one possible explanation for the increased risk of coronary heart disease in people with diabetes.

"Understanding exactly how 'ultrabad' LDL damages arteries is crucial, as this knowledge could help develop new anti-cholesterol treatments for patients."

The research was published in the journal Diabetes.

For more information please call Kate Cox, Communications Manager, Warwick Medical School on +44 (0)2476 574522 or +44 (0) 7920 531221 or To contact Dr Rabbani call: +44 (0)7880 850730 or email: OR the BHF press office on 020 7554 0164 or 07764 290 381 (out of hours) or email

Notes to editors

1. Scarborough P et al (2010). Coronary heart disease statistics 2010 edition. British Heart Foundation: London.

2 Diabetes UK (2010). Diabetes in the UK: Key statistics on diabetes. Online at

3. Department of Health (2007). About diabetes. Online at

4. Research published in Diabetes online 27/05/11: 'Glycation of low density lipoprotein by methylglyoxal increases atherogenicity – a possible contributor to increased risk of cardiovascular disease in diabetes'. DOI 10.2337/db11-0085

The British Heart Foundation (BHF) is the nation's heart charity, dedicated to saving lives through pioneering research, patient care, campaigning for change and by providing vital information. But we urgently need help. We rely on donations of time and money to continue our life-saving work. Because together we can beat heart disease.

Kate Cox | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>