Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunburns strike twice

27.02.2014

Melanoma is particularly dangerous because it can form metastases in vital organs such as the lungs, liver or brain.

UV radiation is considered to be the most significant triggering factor. An interdisciplinary team of researchers from the University Hospital and the LIMES Institute of the University of Bonn has now discovered that sunburns contribute to the development of this malignant disease not only through direct alteration of pigment cell genomes but also indirectly through inflammatory processes in the surrounding tissue. The results are now being published online in the renowned journal "Nature".


Melanoma cells (green) migrate particularly effectively on blood vessel surfaces (red).

(c) Photo: Tobias Bald/UKB

According to predictions from the Robert Koch Institute, approximately 20,000 people in Germany will develop malignant melanoma in 2014. More than 2500 of those affected will die from metastases to internal organs. "The inflammatory reaction of the skin after severe sun exposure promotes the early migration of melanoma cells along vessels within the body," says Prof. Dr. Thomas Tüting, professor of Experimental Dermatology at the University of Bonn Hospital and leader of the study team.

Melanoma cells migrate along blood vessels

To understand the development and early metastasis of malignant melanoma, the researchers developed experimental models in mice which allowed them to investigate the effect of inflammatory responses following UV exposure. "We repeatedly observed increased melanoma metastases in the lungs of UV-irradiated mice," reports the dermatologist Dr. Evelyn Gaffal. Analyses of melanoma tissue sections revealed the spread of tumor cells along blood vessel surfaces in inflamed skin. Using modern methods of fluorescence and electron microscopy, the researchers observed a close association between melanoma cells, inner blood vessel walls and immune cells, especially neutrophils.

Activated neutrophils pave the way for melanoma cells

Further experiments showed that neutrophils play an important role in metastasis. They are attracted by alarm signals emitted by UV-damaged keratinocytes in the epidermis. The use of special mouse strains which lack important molecules required for the activation of innate immune defense shed light on the underlying signaling pathways.

Inflammatory mediators promote melanoma cell motility

Researchers in the LIMES Institute of the University of Bonn developed new experimental methods to investigate the interaction between melanoma cells and cells of the inner blood vessel walls, known as endothelial cells. In doing so, they observed that melanoma cells can migrate particularly effectively on blood vessel surfaces. "Melanoma cells increase their motility in an inflammatory environment," says Prof. Dr. Waldemar Kolanus.

Further investigations with human melanoma cells and modern genomic methods provided insights how inflammatory mediators stimulate melanoma cells migration. "During embryonic development pigment cell precursors travel long distances along blood vessels in the body in order to reach their final destination in the skin. These migratory programs are erroneously reactivated in melanoma cells by inflammation," says Prof. Dr. Michael Hölzel from the Institute of Clinical Chemistry and Clinical Pharmacology in Bonn.

Important insights for new treatment strategies

"Our findings may explain why patients with superficially ulcerated melanomas and neutrophil infiltration frequently develop organ metastases" says Prof. Tüting. The researchers hope to develop new forms of targeted therapy in the future which specifically interfere with inflammatory signaling cascades and inhibit the migration of melanoma cells on the surfaces of blood vessels. The interdisciplinary cooperation between different research groups in Bonn within the Collaborative Research Center 704 and the Excellence Cluster ImmunoSensation provide an excellent basis for such ambitious projects. 

Publication: Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma, Nature, DOI: 10.1038/nature13111

Contact information for journalists:

Prof. Dr. Thomas Tüting
Senior Physician at the Department of Dermatology and Allergology and Director of the Experimental Dermatology Laboratory
University of Bonn Hospital
Tel. ++49-228-287-15370
E-Mail: Thomas.Tueting@ukb.uni-bonn.de

Dr. Evelyn Gaffal
Resident at the Department of Dermatology and Allergology
University of Bonn Hospital
Tel. ++49-228-287-16701
E-Mail: Evelyn.Gaffal@ukb.uni-bonn.de

Prof. Dr. Michael Hölzel
Institute of Clinical Chemistry and Clinical Pharmacology
Laboratory for RNA Biology
University of Bonn Hospital
Tel. ++49-228-287-12170
E-Mail: Michael.Hoelzel@ukb.uni-bonn.de

Prof. Dr. Waldemar Kolanus
Molecular Immunology and Cell Biology
Life and Medical Sciences (LIMES) Institut
Tel. ++49-228-73-62790
E-Mail: wkolanus@uni-bonn.de


Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: Biology Dermatology Friedrich-Wilhelms-Universität LIMES Sunburns blood skin surfaces

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>