Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunburns strike twice

27.02.2014

Melanoma is particularly dangerous because it can form metastases in vital organs such as the lungs, liver or brain.

UV radiation is considered to be the most significant triggering factor. An interdisciplinary team of researchers from the University Hospital and the LIMES Institute of the University of Bonn has now discovered that sunburns contribute to the development of this malignant disease not only through direct alteration of pigment cell genomes but also indirectly through inflammatory processes in the surrounding tissue. The results are now being published online in the renowned journal "Nature".


Melanoma cells (green) migrate particularly effectively on blood vessel surfaces (red).

(c) Photo: Tobias Bald/UKB

According to predictions from the Robert Koch Institute, approximately 20,000 people in Germany will develop malignant melanoma in 2014. More than 2500 of those affected will die from metastases to internal organs. "The inflammatory reaction of the skin after severe sun exposure promotes the early migration of melanoma cells along vessels within the body," says Prof. Dr. Thomas Tüting, professor of Experimental Dermatology at the University of Bonn Hospital and leader of the study team.

Melanoma cells migrate along blood vessels

To understand the development and early metastasis of malignant melanoma, the researchers developed experimental models in mice which allowed them to investigate the effect of inflammatory responses following UV exposure. "We repeatedly observed increased melanoma metastases in the lungs of UV-irradiated mice," reports the dermatologist Dr. Evelyn Gaffal. Analyses of melanoma tissue sections revealed the spread of tumor cells along blood vessel surfaces in inflamed skin. Using modern methods of fluorescence and electron microscopy, the researchers observed a close association between melanoma cells, inner blood vessel walls and immune cells, especially neutrophils.

Activated neutrophils pave the way for melanoma cells

Further experiments showed that neutrophils play an important role in metastasis. They are attracted by alarm signals emitted by UV-damaged keratinocytes in the epidermis. The use of special mouse strains which lack important molecules required for the activation of innate immune defense shed light on the underlying signaling pathways.

Inflammatory mediators promote melanoma cell motility

Researchers in the LIMES Institute of the University of Bonn developed new experimental methods to investigate the interaction between melanoma cells and cells of the inner blood vessel walls, known as endothelial cells. In doing so, they observed that melanoma cells can migrate particularly effectively on blood vessel surfaces. "Melanoma cells increase their motility in an inflammatory environment," says Prof. Dr. Waldemar Kolanus.

Further investigations with human melanoma cells and modern genomic methods provided insights how inflammatory mediators stimulate melanoma cells migration. "During embryonic development pigment cell precursors travel long distances along blood vessels in the body in order to reach their final destination in the skin. These migratory programs are erroneously reactivated in melanoma cells by inflammation," says Prof. Dr. Michael Hölzel from the Institute of Clinical Chemistry and Clinical Pharmacology in Bonn.

Important insights for new treatment strategies

"Our findings may explain why patients with superficially ulcerated melanomas and neutrophil infiltration frequently develop organ metastases" says Prof. Tüting. The researchers hope to develop new forms of targeted therapy in the future which specifically interfere with inflammatory signaling cascades and inhibit the migration of melanoma cells on the surfaces of blood vessels. The interdisciplinary cooperation between different research groups in Bonn within the Collaborative Research Center 704 and the Excellence Cluster ImmunoSensation provide an excellent basis for such ambitious projects. 

Publication: Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma, Nature, DOI: 10.1038/nature13111

Contact information for journalists:

Prof. Dr. Thomas Tüting
Senior Physician at the Department of Dermatology and Allergology and Director of the Experimental Dermatology Laboratory
University of Bonn Hospital
Tel. ++49-228-287-15370
E-Mail: Thomas.Tueting@ukb.uni-bonn.de

Dr. Evelyn Gaffal
Resident at the Department of Dermatology and Allergology
University of Bonn Hospital
Tel. ++49-228-287-16701
E-Mail: Evelyn.Gaffal@ukb.uni-bonn.de

Prof. Dr. Michael Hölzel
Institute of Clinical Chemistry and Clinical Pharmacology
Laboratory for RNA Biology
University of Bonn Hospital
Tel. ++49-228-287-12170
E-Mail: Michael.Hoelzel@ukb.uni-bonn.de

Prof. Dr. Waldemar Kolanus
Molecular Immunology and Cell Biology
Life and Medical Sciences (LIMES) Institut
Tel. ++49-228-73-62790
E-Mail: wkolanus@uni-bonn.de


Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: Biology Dermatology Friedrich-Wilhelms-Universität LIMES Sunburns blood skin surfaces

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>