Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Against sulphur dioxide in food products

19.06.2009
When fruits and vegetables are processed to food products such as wine and snacks, in most cases sulphur dioxide (SO2) has a finger in the pie. The main function of this additive is the prevention of enzymatic and non enzymatic browning in foods, especially fruit and vegetable products.

In addition, sulphur dioxide has strong antimicrobial capacity and preserves against microbial spoilage. "The SO2SAY project will develop a strategy to replace the application of sulphur dioxide or its salts for almost all food products" explains coordinator Hauke Hilz. "An important aspect for food applications is the preservation of the sensory quality and shelf-life of the SO2-free products."

EU-funded project starts research on replacement of sulfites in food

Nine partners from four European countries and Israel start their work on SO2SAY, a three year EU-funded project with a total budget of 4.5 mio €, thereof 3 mio € funding, with a kick off meeting in Bremerhaven, Germany. The project, coordinated by ttz Bremerhaven, will combine research on innovative SO2 replacing agents, mild processing steps and packaging technologies. ttz Bremerhaven (DE), Campden BRI (UK), Wageningen University (NL), University of Bonn (DE), Fundacion Leia (ES), Gemüse Meyer (DE), Biurko Gorri (ES), Ekolo (ES) and Frutarom (IL) defined to increase food quality, to reduce health risks for consumers as well as to increase the competitiveness of European SMEs in the food and drink industry on the global market as their main strategic objectives.

Sulphur dioxide (SO2) is traditionally used as antioxidant and preservative in fruit and vegetable products, dried fruits, snack products and wine. The main advantage of SO2 is the combination of antioxidative activity with its ability to inhibit polyphenol oxidase, which is catalysing browning of food products. Furthermore, sulphur dioxide acts as food preservative preventing microbial growth. However, SO2 and sulphites strongly reduce vitamin B1 uptake. Reduced uptake of this vitamin can lead to several health problems such as chronic headache and disturbance of the memory. Food is the main source for the uptake of sulphur dioxide.

A special risk group is the group of asthma patients. Sulphites are promoting attacks of asthma. For these patients an intake of less than 10 mg sulphite might be enough to provoke an asthma attack.

"Considering these facts, the application of SO2 in food products has to be avoided by novel processing technologies or replaced by different, healthier additives", knows Hauke Hilz. "This will promote Food Quality and Safety as well as consumer's Quality of Life".

Three approaches are followed to finally replace SO2 and sulphites in food:

a. Reduction of oxygen contact of the food producs e.g. by modified atmosphere packaging or by edible coatings for fruits and vegetables,
b. Use of plant metabolites as antioxidants and antimicrobial agents, and
c. Inhibition of polyphenol oxidase, which is responsible for enzymatic browning in fruit and vegetable products.
However, the reduction or replacement of SO2 bears the risk of changing the foodstuffs sensory properties, especially color and taste. Thus, consumers may refuse such food alternatives, though these alternative foodstuffs can be considered healthier. Therefore, all developments in the SO2SAY project will be accompanied by comprehensive sensory studies and consumer tests.

ttz Bremerhaven is an innovative provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of proven ex-perts are working in the areas of food technology and bioprocess engineering, analytical science as well as water, energy and land use management, health systems, and administration and software.

Contact:
Christian Colmer
SO2SAY Dissemination Manager
Project Manager
Bio Process Engineering/Food Technology
ttz Bremerhaven
Fischkai 1, D-27572 Bremerhaven (Germany)
Phone: +49 (0)471 48 32 -150
FAX: +49 (0)471 48 32 - 129
ccolmer@ttz-bremerhaven.de

Britta Rollert | idw
Further information:
http://www.ttz-bremerhaven.de

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>