Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar substance 'kills' good HDL cholesterol, new research finds

01.09.2014

Scientists at the University of Warwick have discovered that 'good' cholesterol is turned 'bad' by a sugar-derived substance.

The substance, methylglyoxal - MG, was found to damage 'good' HDL cholesterol, which removes excess levels of bad cholesterol from the body.

Low levels of HDL, High Density Lipoprotein, are closely linked to heart disease, with increased levels of MG being common in the elderly and those with diabetes or kidney problems.

Supported by funding from the British Heart Foundation (BHF) and published in Nutrition and Diabetes, the researchers discovered that MG destabilises HDL and causes it to lose the properties which protect against heart disease.

... more about:
»BHF »HDL »Heart »blood »cholesterol »damage »difference »drugs »levels »substances

HDL damaged by MG is rapidly cleared from the blood, reducing its HDL content, or remains in plasma having lost its beneficial function.

Lead researcher Dr Naila Rabbani, of the Warwick Medical School, says that: "MG damage to HDL is a new and likely important cause of low and dysfunctional HDL, and could count for up to a 10% risk of heart disease".

There are currently no drugs that can reverse low levels of HDL, but the Warwick researchers argue that by discovering how MG damages HDL has provided new potential strategies for reducing MG levels.

Commenting on the research's implications Dr Rabbani said:

"By understanding how MG damages HDL we can now focus on developing drugs that reduce the concentration of MG in the blood, but it not only be drugs that can help.

"We could now develop new food supplements that decrease MG by increasing the amount of a protein called glyoxalase 1, or Glo 1, which converts MG to harmless substances.

"This means that in future we have both new drugs and new foods that can help prevent and correct low HDL, all through the control of MG."

A potentially damaging substance, MG is formed from glucose in the body. It is 40,000 times more reactive than glucose it damages arginine residue (amino acid) in HDL at functionally important site causing the particle to become unstable.

Glo1 converts MG to harmless substances and protects us. MG levels are normally kept low in the body to maintain good health but they slowly increase with ageing as Glo1 slowly becomes worn out and is only slowly replaced.

Dr Rabbani says: "We call abnormally high levels of MG 'dicarbonyl stress'. This occurs in some diseases – particularly diabetes, kidney dialysis, heart disease and obesity. We need sufficient Glo1 to keep MG low and keep us in good health."

###

Notes to Editors:

To speak with Dr Rabbani please contact Tom Frew, International Press Officer – University of Warwick; a.t.frew@warwick.ac.uk +44 (0)2476575910

The British Heart Foundation (BHF)

For over 50 years we've pioneered research that's transformed the lives of people living with heart and circulatory conditions. Our work has been central to the discoveries of vital treatments that are changing the fight against heart disease. But so many people still need our help. From babies born with life-threatening heart problems to the many Mums, Dads and Grandparents who survive a heart attack and endure the daily battles of heart failure. Join our fight for every heartbeat in the UK. Every pound raised, minute of your time and donation to our shops will help make a difference to people's lives.

For more information visit bhf.org.uk.

For more information please call the BHF press office on 020 7554 0164 or 07764 290 381 (out of hours) or email newsdesk@bhf.org.uk.

Tom Frew | Eurek Alert!

Further reports about: BHF HDL Heart blood cholesterol damage difference drugs levels substances

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>