Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful blockade

05.05.2014

Using a new active substance, scientists from the University Hospital of Würzburg have managed to stop the growth of skin cancer cells. Further tests are now required to see whether this inhibitor can be used in treatment and whether it also has a growth-inhibiting effect on the tumor cells of other types of cancer.

Not only can viruses trigger annoying and unpleasant infections, such as influenza or measles, they are also responsible for a number of human cancers. One example is Merkel cell carcinoma – a rare but highly aggressive form of skin cancer. Around six years ago, scientists found evidence here that a virus is present in roughly 80 percent of all carcinomas – the so-called Merkel cell polyomavirus.

How viruses cause cancer

The exact mechanism used by the virus to make cells divide and multiply unchecked is not yet known. What is clear, however, is that special proteins encoded by the virus genome, which are known in scientific jargon as T antigens, play a pivotal role. Studies on related tumor viruses have revealed that T antigens are able to inactivate the so-called retinoblastoma protein inside cells; this protein is responsible for preventing uncontrolled cell proliferation.

Therefore, the interaction between the T antigen and the retinoblastoma protein provides a suitable target for potential treatment. Whether this will have the desired result has now been researched by scientists from the Department of Dermatology, Venereology and Allergology at the University Hospital of Würzburg. The results of their study have just been published in the scientific journal PLOS One.

Attack on intermediary protein

“To enable the T antigen to interact with the retinoblastoma protein, it needs a mediator of sorts in the form of a particular protein, the so-called heat shock protein HSP70,” says Christian Adam, a Research Associate at the Department of Dermatology, Venereology and Allergology and lead author of the study. Adam and his colleagues therefore blocked HSP70 with a chemical inhibitor and examined the consequences. The results were very promising.

“Our first step was to investigate which of the total of 17 variants in the members of the HSP70 family are present inside the cells,” explains Adam. To this end, a number of Merkel cell cancer lines were analyzed, as well as other cancer cells for comparison. One variant stood out with a clear majority: the HSC70 isoform. “What we know about this isoform is that a high concentration in cancer cells goes hand in hand with a poor prognosis for the patient,” remarks Adam. Or, to put it another way, HSC70 is apparently good for tumor growth.

The scientists then examined what happens when HSC70 is blocked using the special inhibitor developed by a partner in the USA. Again, the result was clear: “Of the seven cell lines we worked with, five died after treatment,” says Adam. This success was evident not only in the cell culture, but also in animal experiments. This is a result which, in Adam’s words, allows “a certain amount of hope.”

A surprising result

However, one thing that slightly complicates the issue is the fact that the cells responded regardless of whether or not they were infected with viruses. “We tested the influence of the HSC70 inhibitor both on cells carrying viruses and on cells without a viral infection,” says Adam. In both groups, some lines responded extremely sensitively to the treatment, and others not at all.

This is a result that can be interpreted in various ways. As one possibility, it suggests that an HSC70 inhibitor would be a potential drug for various different types of tumor in which the protein is present in increased concentrations inside the cells, regardless of whether or not a virus has triggered the tumor growth or some other cause is responsible for it.

Further investigations are needed

The other explanation is as follows: “Just because it has not been possible so far to prove the presence of viruses in all Merkel cell cancer lines, this does not mean that no viruses were involved in their creation,” says Adam. It might just as well be that the detection methods were not sensitive enough to locate the virus genome. Or that the cells expelled the viruses again after they had caused them to multiply unchecked.

Many questions, therefore, which will need to be answered before a new drug for the fight against cancer is launched on the market. Until then, “many more studies and tests will be necessary,” comments Adam. Though the results so far are promising.

Merkel cell carcinoma

Merkel cell carcinomas, compared to other malignant tumors of the skin, are relatively rare. Every year, two to three in a million light-skinned people develop it. However, this number has been rising dramatically in recent years. This type of cancer predominantly affects older people; it is also more prevalent in people with a weakened immune system, such as patients after an organ transplant or AIDS sufferers. This is why the researchers looked for a virus that might be involved in this disease and also finally found it. Ultraviolet light is another risk factor.

Why no viruses can be found in about 20 percent of Merkel cell carcinomas is unclear. One explanation for this is that Merkel cell carcinoma actually involves two or more closely related cancers, of which only one is infected with Merkel cell polyomaviruses.

The HSP70 Modulator MAL3-101 Inhibits Merkel Cell Carcinoma. Christian Adam, Anne Baeurle, Jeffrey L. Brodsky, Peter Wipf, David Schrama, Jürgen Christian Becker, Roland Houben. PLoS ONE 9(4): e92041. doi:10.1371/journal.pone.0092041

Contact

Christian Adam, Adam_C@ukw.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: Dermatology HSC70 Venereology carcinoma carcinomas explanation retinoblastoma viruses

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Fast, stretchy circuits could yield new wave of wearable electronics

30.05.2016 | Power and Electrical Engineering

Roadmap for better protection of Borneo’s cats and small carnivores

30.05.2016 | Ecology, The Environment and Conservation

Rosetta’s comet contains ingredients for life

30.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>