Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different subtypes of triple-negative breast cancer respond to different therapies

28.06.2011
Vanderbilt-Ingram Cancer Center researchers have identified six subtypes of an aggressive and difficult-to-treat form of breast cancer, called "triple-negative breast cancer (TNBC)."

In the July issue of the Journal of Clinical Investigation, Cancer Center Director Jennifer Pietenpol, Ph.D., and colleagues describe the molecular features of these six distinct subtypes and identify chemotherapies to which the different subtypes respond in cultured cells and animal tumor models.

Knowing the specific subtype could help physicians determine which therapies would work best in patients with TNBC and also inform the discovery and development of new drugs to treat this aggressive form of breast cancer, the authors suggest.

Triple negative breast cancers (TNBC) account for 10 percent to 20 percent of all breast cancers and tend to be more aggressive than other types of breast cancer.

"It's a pretty significant health problem from the standpoint that 11 percent of Caucasians, 17 percent of Hispanics, and 25 percent of African-Americans have this type of breast cancer," Pietenpol said.

While some patients with TNBC initially respond well to standard chemotherapy, these tumors are more likely to recur after treatment and have a poorer prognosis (less than 30 percent of women with metastatic TNBC – which has spread outside the breast – survive 5 years).

The difficulty in treating these tumors stems from what they lack.

The term "triple-negative breast cancer," explained Pietenpol, "is just a definition of what (the cancer) isn't."

TNBC tumors lack the estrogen receptors (ER) and progesterone receptors (PR) that drive the majority (about 60 percent) of breast cancers. They also show no amplification of another receptor, called HER2, which drives about 20 percent to 30 percent of breast cancers.

The absence of these receptors means that the tumors are unlikely to respond to hormone therapies like tamoxifen and to therapies targeted to HER2 like trastuzumab (Herceptin).

Postdoctoral fellows Brian Lehmann, Ph.D., and Joshua Bauer, Ph.D., along with biostatistician Xi (Steven) Chen, Ph.D., identified 587 cases of TNBC among 21 publicly-available breast cancer data sets. They then analyzed the genomic data to uncover unique gene expression profiles (sets of genes that are either turned "up" or "down" in the tumors).

Their analysis revealed six distinct subtypes – two "basal-like" types (BL1 and BL2) involving cell cycle and DNA damage response genes; two "mesenchymal" types (M and MSL) driven by genes involved in cell differentiation and growth factor pathways; an "immunomodulatory" (IM) group, driven by immune system genes; and a "luminal" subgroup (LAR) driven by androgen (or "male" sex hormone) signaling.

The researchers also identified cell lines representing each of these subtypes and tested various chemotherapies in development or in clinical investigation in the cell lines. They also implanted these cells into mice to generate animal models of these tumor subtypes.

They found that the basal-like subtypes (BL1 and BL2) responded to cisplatin; the mesenchymal-like subtypes (M and MSL) responded to dasatinib and experimental drug NVP-BEZ235; and the LAR subtypes were sensitive to bicalutamide.

The findings provide a way of distinguishing molecular differences in this diverse group of breast cancers and suggest molecular targets for each subtype that may inform drug discovery and development efforts.

"In our opinion, the big breakthrough is just being able to say 'this isn't one disease,'" said Pietenpol.

Being able to distinguish distinct biological subtypes of TNBC could help guide the design of select clinical trials for subtypes of breast cancer, point toward new biomarkers for patient selection for a given therapy, and identify new targets for drug discovery, she said.

"This really is the first step in translating genomic information into personalizing therapy for women with a very difficult-to-treat breast cancer."

Other Vanderbilt authors on the study were Melinda Sanders, M.D., Bapsi Chakravarthy, M.D., and Yu Shyr, Ph.D. The research was funded by the National Cancer Institute, the American Cancer Society and the Susan G. Komen Foundation.

Dagny Stuart | EurekAlert!
Further information:
http://www.Vanderbilt.edu

Further reports about: BL1 BL2 Cancer HER2 LAR MSL TNBC breast cancer drug discovery estrogen receptor

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>