Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New subtype of ovarian cancer may be vulnerable to anti-angiogenic drugs

15.02.2012
Scientists at Dana-Farber Cancer Institute have identified a subtype of ovarian cancer able to build its own blood vessels, suggesting that such tumors might be especially susceptible to "anti-angiogenic" drugs that block blood vessel formation.

In a study published in the online journal PloS ONE, the investigators estimate that the subtype may account for a third of all serous ovarian cancers, a common cancer of the surface of the ovaries. The discovery of the subtype, made by analyzing data from the clinical records of more than 1,500 serous ovarian cancer patients and samples of their tumors, may spur clinical trials to determine if patients with the subtype can benefit from anti-angiogenic therapies now being tested in other cancers.

"Unlike breast cancer, where we can distinguish different subtypes based on their genetic signatures, ovarian cancer has been viewed as a monolithically homogenous disease -- each tumor very much like every other," says John Quackenbush, PhD, the study's co-senior author with his Dana-Farber colleague Ursula Matulonis, MD. "With this study, we've shown that serous ovarian cancer exists in at least one distinct subtype at the molecular level, raising the possibility that it will be vulnerable to therapies directed at its molecular weaknesses."

Ovarian cancer is the fifth leading cause of cancer death for women in the United States, responsible for more than 15,000 deaths annually in this country, according to the American Cancer Society. High grade serous ovarian cancers – the focus of the current study – are one of several varieties of tumors that appear in the "epithelial" tissue lining the ovaries. Epithelial tumors account for about half of all ovarian cancers. ("Serous" refers to tumors that are found in tissues that produce a serum-like fluid. "High grade" refers to the highly abnormal appearance of the tumor's cells under a microscope.)

Although many ovarian cancers initially recede or grow more slowly when treated with conventional, platinum-based chemotherapy drugs, the vast majority overcome that tendency and begin to grow again.

In the current study, researchers scanned the activity of thousands of genes in high grade serous ovarian cancers from 129 patients with an advanced stage of the disease. They then sifted the data using an algorithm called rISIS, which randomly assigns the tumor samples to different groups until it finds a grouping with a distinct set of genetic characteristics. That grouping represents a potential cancer subtype.

The technique yielded four possible subtypes of high grade serous ovarian cancer, but only one of them held up when researchers applied a different technique for scanning gene activity. When researchers catalogued the genes that were particularly active -- or "highly expressed" -- in that single subtype, a key trend appeared: many of the genes were known to be involved in angiogenesis, the process by which tumors build blood vessels to tap into the bloodstream for oxygen and nutrients. This distinctive array of overactive genes was dubbed the "angiogenesis signature."

A common shortcoming of gene-profiling studies is that the results often aren't reproducible: different labs obtain different gene signatures for the same types of cancer. To ensure their findings were not skewed by their lab procedures or testing methods, the Dana-Farber investigators analyzed data from ten published, independent studies of gene expression in serous ovarian cancer. Together, these studies involved 1,606 ovarian cancer patients.

"The analysis confirmed our finding," Quackenbush relates. "The angiogenic [blood vessel-producing] subtype is real." When investigators analyzed the medical records of those 1,606 patients, they found that those with the angiogenic subtype tended to have more advanced, aggressive tumors than those without the subtype.

A clinical trial will be necessary to determine if angiogenesis-blocking drugs are particularly effective in patients with the angiogenic subtype. But there is reason for optimism: about 30 percent of serous ovarian cancer patients who receive angiogenesis inhibitors in a clinical trial benefit from the drugs; and the angiogenic subtype comprises about 30 percent of all serous ovarian cancers. "It is a test like this that may in the future help us select which patients will benefit most from a drug like Avastin," says Matulonis.

The researchers believe that their classification of this new subtype has great potential to influence the treatment many patients receive and improve outcomes for a significant number of people with this disease. "The approach we've taken in this study offers a powerful way of identifying molecular subtypes of other cancers as well," says Quackenbush.

The first authors of the study are Stefan Bentink, PhD, and Benjamin Haibe-Kains, PhD, of Dana-Farber and the Harvard School of Public Health. Co-authors include Thomas Risch, Kristina Holton, and Renee Rubio, of Dana-Farber; Joyce Liu, MD, and Aedin Culhane, PhD, of Dana-Farber and the Harvard School of Public Health; Ronny Drapkin, MD, PhD, of Dana-Farber and Brigham and Women's Hospital; Jian-Bing Fan, PhD, Craig April, PhD, Jing Chen, and Eliza Wickham-Garcia, of Illumina, Inc., of San Diego; and Michelle Hirsch, MD, PhD, of Brigham and Women's.

The study was supported by the Dana-Farber Cancer Institute Women's Cancer Program, the Strategic Plan Fund, and the Madeline Franchi Ovarian Cancer Research Fund at Dana-Farber.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook: facebook.com/danafarbercancerinstitute

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>