Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows SNPs associated with breast cancer risk alter binding affinity for pioneer factor FOXA1

24.01.2013
Dartmouth scientists showed that more than half of all the SNPs associated with breast cancer risk are located in distant regions and bound by FOXA1, a protein required for estrogen receptor-á (ER) function according to a paper published in the journal Nature Genetics in November.
Jason Moore, PhD, a Third Century Professor of genetics, director of the Institute for Quantitative Biomedical Sciences, and associate director for bioinformatics at Dartmouth-Hitchcock Norris Cotton Cancer Center, and other researchers used a new methodology that combines cistromics, epigenomics, and genotype imputation to annotate the non-coding regions of the geneomie in breast cancer cells and systematically identify the function nature of SNPS associated with breast cancer risk.

“Understanding the biology behind the genetic risk factors opens the door to identifying new drug targets,” said Dr. Moore.

Results showed that, for breast cancer, the majority of risk-associated SNPs modulate FOXA1 binding. First, they are in complete linkage disequilibrium (LD) with SNPs localized to sites of FOXA1 binding, and, second, these linked SNPs are capable of changing the recruitment of FOXA1 in a significant manner.

Pioneer factors, such as FOXA1, and lineage-specific factors, such as ESR1, underlie the transcriptional programs that establish cell identity. Accordingly, researchers indicated that the majority of SNPs that can disrupt normal breast cell identity modulate the binding of the FOXA1 pioneer factor.

The mechanisms underlying breast cancer risk–associated SNPs are unknown. As with most other complex traits, these risk-associated SNPs map to the non-coding regions of the genome. Researchers demonstrated that breast cancer–associated SNPs are enriched for FOXA1 and ESR1 transcription factor–binding sites and H3K4me1 histone modification. Enrichment is dependent on factor, cell type and cancer type. The body of evidence supporting regulatory mechanisms for GWAS-identified risk-associated SNPs is steadily growing. Heterozygous sites with differential allelic occupancy within 100 bp of transcription start sites have been shown to have a strong association with differential gene expression and to be enriched for GWAS-identified SNPs31. Binding of the FOXA1 pioneer factor is central for chromatin opening and nucleosome positioning favorable to transcription factor recruitment. In addition, FOXA1 is central to the establishment of the transcriptional programs that respond to estrogen stimulation in ESR1-positive breast cancer cells.

This research was funded by the National Institutes of Health (NIH R01M009012 & LM010098).

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth College and the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute’s “Comprehensive Cancer Center” designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

For more information contact Donna Dubuc at (603) 653-3615.

Donna M. Dubuc | EurekAlert!
Further information:
http://www.hitchcock.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>