Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows SNPs associated with breast cancer risk alter binding affinity for pioneer factor FOXA1

24.01.2013
Dartmouth scientists showed that more than half of all the SNPs associated with breast cancer risk are located in distant regions and bound by FOXA1, a protein required for estrogen receptor-á (ER) function according to a paper published in the journal Nature Genetics in November.
Jason Moore, PhD, a Third Century Professor of genetics, director of the Institute for Quantitative Biomedical Sciences, and associate director for bioinformatics at Dartmouth-Hitchcock Norris Cotton Cancer Center, and other researchers used a new methodology that combines cistromics, epigenomics, and genotype imputation to annotate the non-coding regions of the geneomie in breast cancer cells and systematically identify the function nature of SNPS associated with breast cancer risk.

“Understanding the biology behind the genetic risk factors opens the door to identifying new drug targets,” said Dr. Moore.

Results showed that, for breast cancer, the majority of risk-associated SNPs modulate FOXA1 binding. First, they are in complete linkage disequilibrium (LD) with SNPs localized to sites of FOXA1 binding, and, second, these linked SNPs are capable of changing the recruitment of FOXA1 in a significant manner.

Pioneer factors, such as FOXA1, and lineage-specific factors, such as ESR1, underlie the transcriptional programs that establish cell identity. Accordingly, researchers indicated that the majority of SNPs that can disrupt normal breast cell identity modulate the binding of the FOXA1 pioneer factor.

The mechanisms underlying breast cancer risk–associated SNPs are unknown. As with most other complex traits, these risk-associated SNPs map to the non-coding regions of the genome. Researchers demonstrated that breast cancer–associated SNPs are enriched for FOXA1 and ESR1 transcription factor–binding sites and H3K4me1 histone modification. Enrichment is dependent on factor, cell type and cancer type. The body of evidence supporting regulatory mechanisms for GWAS-identified risk-associated SNPs is steadily growing. Heterozygous sites with differential allelic occupancy within 100 bp of transcription start sites have been shown to have a strong association with differential gene expression and to be enriched for GWAS-identified SNPs31. Binding of the FOXA1 pioneer factor is central for chromatin opening and nucleosome positioning favorable to transcription factor recruitment. In addition, FOXA1 is central to the establishment of the transcriptional programs that respond to estrogen stimulation in ESR1-positive breast cancer cells.

This research was funded by the National Institutes of Health (NIH R01M009012 & LM010098).

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth College and the Geisel School of Medicine at Dartmouth with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute’s “Comprehensive Cancer Center” designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

For more information contact Donna Dubuc at (603) 653-3615.

Donna M. Dubuc | EurekAlert!
Further information:
http://www.hitchcock.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>