Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows promising multiple sclerosis treatment targets immune cells to increase neuroprotection

06.12.2011
Results published in the American Journal of Pathology

Laquinimod is an orally available synthetic compound that has been successfully evaluated in phase II/III clinical studies for the treatment of relapsing-remitting multiple sclerosis (RRMS). The mechanism of action of laquinimod has not been fully elucidated, but a study published in the January 2012 issue of The American Journal of Pathology suggests that laquinimod triggers immune cells within the central nervous system to produce and release brain-derived neurotrophic factor (BDNF), contributing to the repair or survival of neurons and thus limiting brain damage.

"Our data are indicative of a direct and sustained effect of laquinimod on the up-regulation of bioactive BDNF in patients with RRMS. Additionally, we demonstrate that laquinimod targets monocytes and skews the phagocyte population towards a regulatory phenotype, which in turn mediates immune modulation in vivo," explained Jan Thöne, MD, of the Department of Neurology at St. Josef-Hospital Bochum and Ruhr-University Bochum, Germany.

Neurotrophins, such as BDNF, are essential for the development and maintenance of neurons and axons in the central nervous system. Although BDNF is mainly produced by neurons, several types of immune cells also secrete BDNF, suggesting a role in neuroprotection.

To elucidate the mechanism of action of laquinimod, and to explore its potential neuroprotective capacity, the researchers evaluated levels of BDNF in the serum of RRMS patients treated with laquinimod in phase II clinical trials. A significant and robust BDNF increase occurred in 76% of the laquinimod-treated patients, with up to an 11-fold increase in BDNF serum levels observed in individual patients. BDNF elevation in individual patients was independent of relapse rate, and there was no correlation between BDNF levels and age, gender, or baseline disability. Yet, the source of serum BDNF subsequent to treatment remained questionable.

Experiments with animal models corroborated the findings in human patients. Experimental autoimmune encephalomyelitis (EAE; a model of MS) was induced in mice with a conditional BDNF deficiency in immune cells (LLF mice) and in wild-type (WT) control mice. Treatment with laquinimod resulted in a significant reduction in EAE incidence and disease severity in the WT mice. The effect of laquinimod was significantly reduced in the LLF-mice.

Further studies showed that WT mice treated with a suboptimal dose of laquinimod demonstrated a significant reduction in the inflammatory area and level of demyelination. These mice also displayed a reduction of macrophage infiltration and a significant preservation of axonal densities in comparison with laquinimod-treated LLF mice and controls. The data suggest a BDNF-dependent mechanism of action for laquinimod in autoimmune demyelination.

To investigate whether laquinimod-treated monocytes mediate immune modulation in vivo, laquinimod-stimulated monocytes were injected into WT mice at an early EAE disease stage. The mice showed less severe disease course than controls. Transfer of laquinimod-treated cells derived from LLF mice into WT mice with ongoing EAE did not influence disease course. The cells also secrete significantly less IL-10, an immunomodulatory cytokine that is associated with the generation of regulatory monocytes.

"Consistent with immunomodulatory properties, laquinimod skewed monocytes towards a regulatory phenotype and also acted via modulation of BDNF, which may contribute to neuroprotection in MS patients," said Dr. Thöne. "To date, selective targeting of monocytes has not been described for any other MS pipeline drug, highlighting an innovative mechanism of action of laquinimod."

The article is "Modulation of Autoimmune Demyelination by Laquinimod via Induction of Brain Derived Neurotrophic Factor," by J. Thöne, G. Ellrichmann, S. Seubert, I. Peruga, D-H. Lee, R. Conrad, L. Hayardeny, G. Comi, S. Wiese, R.A. Linker, R. Gold (doi: 10.1016/j.ajpath.2011.09.037). It will appear in The American Journal of Pathology, Volume 10, Issue 1 (January 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>