Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Shows Promise for Developing New Treatments for Breast Cancer

14.03.2012
A new study by University of Kentucky researchers provides insight into developing new treatment strategies for basal-like breast cancer, commonly known as triple-negative breast cancer. This cancer is associated with early metastasis and resistance to chemotherapy and occurs at women at a younger age.

Tumor cells can exploit a cellular program that promotes cell migration and reduces adhesion between cells to spread to distant sites in the body. This cellular program, known as the epithelial-mesenchymal transition, requires large-scale cell movement during embryonic development, tissue remodeling and wound healing. Tumor cells take over this developmental program for their cell movement during invasion and metastasis.

In this EMT process, expression of a cell-to-cell adhesion molecule called E-cadherin, which functions as a “molecular glue” that binds cells to one another, needs to be downregulated in order for cells to disassociate from each other and spread throughout the body. A protein called Snail acts as a master switch in the cell's nucleus to suppress E-cadherin expression and induce EMT in the cell. However, how Snail achieves this task remains unclear. Understanding this molecular mechanism will help to develop novel agents to disrupt this EMT event for treating metastatic breast cancer.

The study, recently published online in the Journal of Clinical Investigation, identified that Snail interacted with a chromatin modifying enzyme G9a and recruited G9a to the E-cadherin promoter. This action closes the gene structure of E-cadherin and thus results in the suppression of “molecular glue” E-cadherin expression. The findings establish that the interaction of Snail with G9a is an important determinant of metastasis in triple-negative breast cancer.

"This finding has significant clinical ramification, because chemical compounds or agents that can disrupt the interaction of Snail with G9a will have a great therapeutic potential of treating triple-negative breast cancer," said UK's Peter Zhou, principal investigator for the study. "Investigators at the Markey Cancer Center are currently exploring this idea and are keen to develop drugs that can treat triple-negative breast cancer."

Triple-negative breast cancer is the worst subtype of breast cancer. This subtype of breast cancer has poor clinical outcome due to the early metastasis of tumor cells and the lack of specific drugs that target it.

"An understanding of the mechanism underlying the biology of metastasis in triple-negative breast cancer will provide novel therapeutic approaches to combat this life-threatening disease," Zhou said.

MEDIA CONTACT: Allison Perry, (859) 323-2399 or allison.perry@uky.edu

Allison Perry | EurekAlert!
Further information:
http://www.uky.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>