Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows additional role for abiraterone in blocking tumor growth in CRPC

15.03.2013
As part of an EU-supported IMI-PREDECT consortium (http://www.predect.eu), a Dutch study showed that anti-androgenic properties of the drug abiraterone may provide an additional mechanism of action in blocking tumour growth of castration resistant prostate cancer (CRPC).

The study, which won the first prize for best abstract in oncology at the 28th European Association of Urology (EAU) Congress to be held in Milan from March 15 to 19, demonstrated that although the use of abiraterone can potentially lead to an accumulation of precursor hormones, its anti-androgenic properties may stop precursor hormone-induced androgen receptor (AR) activation.

"Our results show that high concentrations of androgen precursors can drive CRPC growth through direct activation of (overexpressed) AR and not necessarily via the result of (intratumoural) CYP17-metabolism. This suggests that CRPC may not rely solely on de novo androgen synthesis," said lead author Dr. Jan Matthijs Moll of the Erasmus Medical Center, Dept. of Urology in Rotterdam, Netherlands.

Men with castration resistant prostate cancer are a difficult group to treat. Although metastatic prostate cancer may respond well to androgen ablation therapy initially, castration resistance usually develops within three years. Even though circulating testosterone levels are low in these patients, the androgen receptor reactivates, which indicates the AR remains an important target in CRPC.

The Rotterdam-based group has previously demonstrated that conversion of adrenal androgens into testosterone, rather than intratumoural de novo steroidogenesis, is the major source of testosterone in CRPC tumours. [1]

Clinical trials have demonstrated that abiraterone acetate plus prednisone/prednisolone can increase survival in CRPC patients even after chemotherapy [2]. "Blocking androgen synthesis (pregnenolone and progesterone are converted to androgens via CYP17A1 enzymatic activity) in CRPC patients has demonstrated a prolonged survival, but may eventually fail because androgen precursors can activate the AR directly," explained Moll.

In their study, the researchers generated castration resistant clones by long-term culture of VCaP and DuCaP cell lines in steroid-stripped medium (DCC), with or without addition of anti-androgens used in the clinic. Experiments were conducted with a subset of AR-overexpressing CRPC clones to test cell growth and AR-activation in the presence of adrenal androgen precursors, pregnenolone and progesterone or dihydrotestosterone in combinations with increasing levels of abiraterone.

The results showed that high (100 nM) levels of progesterone, but not of pregnenolone, induced cell growth in VCaP and DuCaP CRPC clones, which could not be blocked by low levels of abiraterone (0,1 µM) that are known to fully inhibit CYP17A1 activity (and thus potential subsequent testosterone production).

In a second experiment, the researchers showed that high levels of precursor androgens can directly activate the AR using a model with a fluorescent AR and that ligand-induced AR-translocation from the cytoplasm to the nucleus was slowed down by abiraterone.

"However, high levels of abiraterone (>5 mM) inhibited steroid-induced, but not basal growth of these (CRPC) cells. This finding, together with the observation that DHT-induced growth was inhibited by high levels of abiraterone, indicates that abiraterone can act as an anti-androgen," the researchers wrote.

"We show that abiraterone, a CYP17A1-blocking drug that has recently been approved in the treatment of CRPC, possesses an additional antiandrogenic property and can block androgen precursor-induced AR-activation at higher concentrations than what is needed for CYP17A1 specific inhibition. This may be a good argument to increase abiraterone exposure in the treatment of CRPC," added Moll.

Moll also said that "it is clear that the AR remains the most important target in the treatment of CRPC."

"Blockade of androgen synthesis seems not sufficient to prevent AR activation. New drugs that block AR activation irrespective of the activating ligand may provide new ammunition to last another 'round' for clinicians to treat CRPC," he said. "We believe it is vital to identify which metabolites have the potential to activate the mutated or overexpressed AR present in CRPC, which under normal conditions may not activate the AR. In that perspective, we are currently working together with our partner, Janssen, and other partners within the IMI-PREDECT consortium on developing new model systems for CRPC to further understand its biology and test new potential pathway perturbations that may benefit CRPC patients in the future."

Ivanka Moerkerken | EurekAlert!
Further information:
http://www.uroweb.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>