Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows additional role for abiraterone in blocking tumor growth in CRPC

15.03.2013
As part of an EU-supported IMI-PREDECT consortium (http://www.predect.eu), a Dutch study showed that anti-androgenic properties of the drug abiraterone may provide an additional mechanism of action in blocking tumour growth of castration resistant prostate cancer (CRPC).

The study, which won the first prize for best abstract in oncology at the 28th European Association of Urology (EAU) Congress to be held in Milan from March 15 to 19, demonstrated that although the use of abiraterone can potentially lead to an accumulation of precursor hormones, its anti-androgenic properties may stop precursor hormone-induced androgen receptor (AR) activation.

"Our results show that high concentrations of androgen precursors can drive CRPC growth through direct activation of (overexpressed) AR and not necessarily via the result of (intratumoural) CYP17-metabolism. This suggests that CRPC may not rely solely on de novo androgen synthesis," said lead author Dr. Jan Matthijs Moll of the Erasmus Medical Center, Dept. of Urology in Rotterdam, Netherlands.

Men with castration resistant prostate cancer are a difficult group to treat. Although metastatic prostate cancer may respond well to androgen ablation therapy initially, castration resistance usually develops within three years. Even though circulating testosterone levels are low in these patients, the androgen receptor reactivates, which indicates the AR remains an important target in CRPC.

The Rotterdam-based group has previously demonstrated that conversion of adrenal androgens into testosterone, rather than intratumoural de novo steroidogenesis, is the major source of testosterone in CRPC tumours. [1]

Clinical trials have demonstrated that abiraterone acetate plus prednisone/prednisolone can increase survival in CRPC patients even after chemotherapy [2]. "Blocking androgen synthesis (pregnenolone and progesterone are converted to androgens via CYP17A1 enzymatic activity) in CRPC patients has demonstrated a prolonged survival, but may eventually fail because androgen precursors can activate the AR directly," explained Moll.

In their study, the researchers generated castration resistant clones by long-term culture of VCaP and DuCaP cell lines in steroid-stripped medium (DCC), with or without addition of anti-androgens used in the clinic. Experiments were conducted with a subset of AR-overexpressing CRPC clones to test cell growth and AR-activation in the presence of adrenal androgen precursors, pregnenolone and progesterone or dihydrotestosterone in combinations with increasing levels of abiraterone.

The results showed that high (100 nM) levels of progesterone, but not of pregnenolone, induced cell growth in VCaP and DuCaP CRPC clones, which could not be blocked by low levels of abiraterone (0,1 µM) that are known to fully inhibit CYP17A1 activity (and thus potential subsequent testosterone production).

In a second experiment, the researchers showed that high levels of precursor androgens can directly activate the AR using a model with a fluorescent AR and that ligand-induced AR-translocation from the cytoplasm to the nucleus was slowed down by abiraterone.

"However, high levels of abiraterone (>5 mM) inhibited steroid-induced, but not basal growth of these (CRPC) cells. This finding, together with the observation that DHT-induced growth was inhibited by high levels of abiraterone, indicates that abiraterone can act as an anti-androgen," the researchers wrote.

"We show that abiraterone, a CYP17A1-blocking drug that has recently been approved in the treatment of CRPC, possesses an additional antiandrogenic property and can block androgen precursor-induced AR-activation at higher concentrations than what is needed for CYP17A1 specific inhibition. This may be a good argument to increase abiraterone exposure in the treatment of CRPC," added Moll.

Moll also said that "it is clear that the AR remains the most important target in the treatment of CRPC."

"Blockade of androgen synthesis seems not sufficient to prevent AR activation. New drugs that block AR activation irrespective of the activating ligand may provide new ammunition to last another 'round' for clinicians to treat CRPC," he said. "We believe it is vital to identify which metabolites have the potential to activate the mutated or overexpressed AR present in CRPC, which under normal conditions may not activate the AR. In that perspective, we are currently working together with our partner, Janssen, and other partners within the IMI-PREDECT consortium on developing new model systems for CRPC to further understand its biology and test new potential pathway perturbations that may benefit CRPC patients in the future."

Ivanka Moerkerken | EurekAlert!
Further information:
http://www.uroweb.org

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>