Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows additional role for abiraterone in blocking tumor growth in CRPC

15.03.2013
As part of an EU-supported IMI-PREDECT consortium (http://www.predect.eu), a Dutch study showed that anti-androgenic properties of the drug abiraterone may provide an additional mechanism of action in blocking tumour growth of castration resistant prostate cancer (CRPC).

The study, which won the first prize for best abstract in oncology at the 28th European Association of Urology (EAU) Congress to be held in Milan from March 15 to 19, demonstrated that although the use of abiraterone can potentially lead to an accumulation of precursor hormones, its anti-androgenic properties may stop precursor hormone-induced androgen receptor (AR) activation.

"Our results show that high concentrations of androgen precursors can drive CRPC growth through direct activation of (overexpressed) AR and not necessarily via the result of (intratumoural) CYP17-metabolism. This suggests that CRPC may not rely solely on de novo androgen synthesis," said lead author Dr. Jan Matthijs Moll of the Erasmus Medical Center, Dept. of Urology in Rotterdam, Netherlands.

Men with castration resistant prostate cancer are a difficult group to treat. Although metastatic prostate cancer may respond well to androgen ablation therapy initially, castration resistance usually develops within three years. Even though circulating testosterone levels are low in these patients, the androgen receptor reactivates, which indicates the AR remains an important target in CRPC.

The Rotterdam-based group has previously demonstrated that conversion of adrenal androgens into testosterone, rather than intratumoural de novo steroidogenesis, is the major source of testosterone in CRPC tumours. [1]

Clinical trials have demonstrated that abiraterone acetate plus prednisone/prednisolone can increase survival in CRPC patients even after chemotherapy [2]. "Blocking androgen synthesis (pregnenolone and progesterone are converted to androgens via CYP17A1 enzymatic activity) in CRPC patients has demonstrated a prolonged survival, but may eventually fail because androgen precursors can activate the AR directly," explained Moll.

In their study, the researchers generated castration resistant clones by long-term culture of VCaP and DuCaP cell lines in steroid-stripped medium (DCC), with or without addition of anti-androgens used in the clinic. Experiments were conducted with a subset of AR-overexpressing CRPC clones to test cell growth and AR-activation in the presence of adrenal androgen precursors, pregnenolone and progesterone or dihydrotestosterone in combinations with increasing levels of abiraterone.

The results showed that high (100 nM) levels of progesterone, but not of pregnenolone, induced cell growth in VCaP and DuCaP CRPC clones, which could not be blocked by low levels of abiraterone (0,1 µM) that are known to fully inhibit CYP17A1 activity (and thus potential subsequent testosterone production).

In a second experiment, the researchers showed that high levels of precursor androgens can directly activate the AR using a model with a fluorescent AR and that ligand-induced AR-translocation from the cytoplasm to the nucleus was slowed down by abiraterone.

"However, high levels of abiraterone (>5 mM) inhibited steroid-induced, but not basal growth of these (CRPC) cells. This finding, together with the observation that DHT-induced growth was inhibited by high levels of abiraterone, indicates that abiraterone can act as an anti-androgen," the researchers wrote.

"We show that abiraterone, a CYP17A1-blocking drug that has recently been approved in the treatment of CRPC, possesses an additional antiandrogenic property and can block androgen precursor-induced AR-activation at higher concentrations than what is needed for CYP17A1 specific inhibition. This may be a good argument to increase abiraterone exposure in the treatment of CRPC," added Moll.

Moll also said that "it is clear that the AR remains the most important target in the treatment of CRPC."

"Blockade of androgen synthesis seems not sufficient to prevent AR activation. New drugs that block AR activation irrespective of the activating ligand may provide new ammunition to last another 'round' for clinicians to treat CRPC," he said. "We believe it is vital to identify which metabolites have the potential to activate the mutated or overexpressed AR present in CRPC, which under normal conditions may not activate the AR. In that perspective, we are currently working together with our partner, Janssen, and other partners within the IMI-PREDECT consortium on developing new model systems for CRPC to further understand its biology and test new potential pathway perturbations that may benefit CRPC patients in the future."

Ivanka Moerkerken | EurekAlert!
Further information:
http://www.uroweb.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>