Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows additional role for abiraterone in blocking tumor growth in CRPC

As part of an EU-supported IMI-PREDECT consortium (, a Dutch study showed that anti-androgenic properties of the drug abiraterone may provide an additional mechanism of action in blocking tumour growth of castration resistant prostate cancer (CRPC).

The study, which won the first prize for best abstract in oncology at the 28th European Association of Urology (EAU) Congress to be held in Milan from March 15 to 19, demonstrated that although the use of abiraterone can potentially lead to an accumulation of precursor hormones, its anti-androgenic properties may stop precursor hormone-induced androgen receptor (AR) activation.

"Our results show that high concentrations of androgen precursors can drive CRPC growth through direct activation of (overexpressed) AR and not necessarily via the result of (intratumoural) CYP17-metabolism. This suggests that CRPC may not rely solely on de novo androgen synthesis," said lead author Dr. Jan Matthijs Moll of the Erasmus Medical Center, Dept. of Urology in Rotterdam, Netherlands.

Men with castration resistant prostate cancer are a difficult group to treat. Although metastatic prostate cancer may respond well to androgen ablation therapy initially, castration resistance usually develops within three years. Even though circulating testosterone levels are low in these patients, the androgen receptor reactivates, which indicates the AR remains an important target in CRPC.

The Rotterdam-based group has previously demonstrated that conversion of adrenal androgens into testosterone, rather than intratumoural de novo steroidogenesis, is the major source of testosterone in CRPC tumours. [1]

Clinical trials have demonstrated that abiraterone acetate plus prednisone/prednisolone can increase survival in CRPC patients even after chemotherapy [2]. "Blocking androgen synthesis (pregnenolone and progesterone are converted to androgens via CYP17A1 enzymatic activity) in CRPC patients has demonstrated a prolonged survival, but may eventually fail because androgen precursors can activate the AR directly," explained Moll.

In their study, the researchers generated castration resistant clones by long-term culture of VCaP and DuCaP cell lines in steroid-stripped medium (DCC), with or without addition of anti-androgens used in the clinic. Experiments were conducted with a subset of AR-overexpressing CRPC clones to test cell growth and AR-activation in the presence of adrenal androgen precursors, pregnenolone and progesterone or dihydrotestosterone in combinations with increasing levels of abiraterone.

The results showed that high (100 nM) levels of progesterone, but not of pregnenolone, induced cell growth in VCaP and DuCaP CRPC clones, which could not be blocked by low levels of abiraterone (0,1 µM) that are known to fully inhibit CYP17A1 activity (and thus potential subsequent testosterone production).

In a second experiment, the researchers showed that high levels of precursor androgens can directly activate the AR using a model with a fluorescent AR and that ligand-induced AR-translocation from the cytoplasm to the nucleus was slowed down by abiraterone.

"However, high levels of abiraterone (>5 mM) inhibited steroid-induced, but not basal growth of these (CRPC) cells. This finding, together with the observation that DHT-induced growth was inhibited by high levels of abiraterone, indicates that abiraterone can act as an anti-androgen," the researchers wrote.

"We show that abiraterone, a CYP17A1-blocking drug that has recently been approved in the treatment of CRPC, possesses an additional antiandrogenic property and can block androgen precursor-induced AR-activation at higher concentrations than what is needed for CYP17A1 specific inhibition. This may be a good argument to increase abiraterone exposure in the treatment of CRPC," added Moll.

Moll also said that "it is clear that the AR remains the most important target in the treatment of CRPC."

"Blockade of androgen synthesis seems not sufficient to prevent AR activation. New drugs that block AR activation irrespective of the activating ligand may provide new ammunition to last another 'round' for clinicians to treat CRPC," he said. "We believe it is vital to identify which metabolites have the potential to activate the mutated or overexpressed AR present in CRPC, which under normal conditions may not activate the AR. In that perspective, we are currently working together with our partner, Janssen, and other partners within the IMI-PREDECT consortium on developing new model systems for CRPC to further understand its biology and test new potential pathway perturbations that may benefit CRPC patients in the future."

Ivanka Moerkerken | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>