Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study redefines how plaques grow in heart disease

12.08.2013
The growth of deadly plaque inside the walls of arteries may not happen as scientists believed, research from the University of Toronto and Massachusetts General Hospital has found.

The research also suggests a new potential target in the treatment of atherosclerosis, a leading cause of cardiovascular disease and death globally.

The research team found that macrophages, white blood cells that drive atherosclerosis, replicate inside plaques. Moreover, this growth is not reliant on cells outside the plaques called monocytes, as scientists had assumed.

"Until now, the thinking was that inflammatory macrophages arise mainly from the recruitment of their precursors — monocytes — from the bloodstream," said Clint Robbins, lead author on the study and an Assistant Professor in U of T's Departments of Laboratory Medicine and Pathobiology, and Immunology. "Our study shows that the accumulation of macrophages also depends on their proliferation locally within the developing plaque."

The journal Nature Medicine published the study results today.

The impact of the research on clinical treatments could be large. Many pharmaceutical companies are pouring resources into potential therapies that can block the recruitment of white blood cells into plaques. But if macrophages self-sustain through local cell division, blocking recruitment may not be the best strategy.

"I think this work will force some major re-evaluations," said Filip Swirski, the study's principal investigator who is a scientist in the Center for Systems Biology at Massachusetts General Hospital and an Assistant Professor at Harvard Medical School. "People have been thinking of targeting monocyte influx to treat atherosclerosis, but they need to consider macrophage proliferation as an additional or alternative approach, especially in established disease."

That approach might be better than targeting circulating monocytes, since interrupting disease-causing processes within plaques could spare other beneficial immune responses that monocytes control, said Swirski.

As well, it could help improve the current standard of care in treating atherosclerosis: statin therapy. Statins, in addition to lowering blood lipids that contribute to plaque, have anti-inflammatory properties. The researchers are now looking at whether statins might limit the spread of macrophages within plaques.

"Additional targeting of macrophage proliferation may further decrease inflammation in atherosclerosis and prove clinically advantageous," said Robbins, who is also a scientist in the Toronto General Research Institute at University Health Network.

The researchers conducted their study in mice, and they caution that much more research is needed to see how the work will translate to humans. But encouragingly, they found evidence of macrophage growth in plaques from human carotid arteries.

Next, the team will compare macrophage proliferation to monocyte recruitment during different stages of atherosclerosis, and look at whether all macrophages, or only subsets, replicate.

The study was funded by the U.S. National Institutes of Health, the Massachusetts General Hospital, the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and the Department of Laboratory Medicine and Pathobiology at the University of Toronto.

This news release was partly adapted from a Massachusetts General Hospital release by Sue McGreevey.

Jim Oldfield | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>