Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study puts notch on the jagged edge of lung cancer metastasis

15.03.2011
Jagged2 promotes lung cancer metastasis by stifling a microRNA

Researchers discovered a new, key component in the spread of lung cancer as well as a likely way to block it with drugs now in clinical trial. The study was published today (Monday, March 14) in the Journal of Clinical Investigation.

A team led by scientists at The University of Texas MD Anderson Cancer Center found a way to identify metastasis-prone lung cancer cells and then uncovered a mechanism that shifts primary tumor cells into a more deadly type of cell with the capacity to move elsewhere in the body.

"We think tumors have to learn how to metastasize because they can't do it initially," said paper senior author Jonathan Kurie, M.D., professor in MD Anderson's Department of Thoracic/Head and Neck Medical Oncology. "Cells change in response to cues from their external environment."

About 90 percent of all cancer deaths are caused by metastasis - the spread to, and invasion of, other organs. Lung cancer is the leading cause of cancer-related death in the United States, accounting for more than 157,000 deaths annually. The median five-year survival rate is 3.5%

Jagged2 silences protective microRNA

The researchers found that when a protein called Jagged2 binds externally to Notch, a membrane protein that sticks out through the surface of a cell, it suppresses a microRNA that thwarts metastasis inside the cell.

"Jagged2 suppresses miR-200 and drives metastasis as a consequence." Kurie said. "It's been known for some time that Notch is involved in cancer, but no one really knew how."

Two Notch inhibitors are in clinical trial at MD Anderson. "These drugs might suppress the ability of primary tumors to metastasize," Kurie said.

"One question is who is supposed to get these drugs," Kurie said. "Our data suggest that low levels of miR-200 may indicate a tumor's susceptibility to Notch inhibitors."

Jailing tumor cells

While the drugs don't kill a primary tumor, they do "keep the primary lung tumors in jail," holding them in place and blocking their transition to mobile cells, Kurie said.

This transition, from immobile epithelial cells, which line or cover an organ, to a migratory cell with the properties of a mesenchymal cell, is an early event in metastasis. Kurie and colleagues previously showed that miR-200 blocks this epithelial-to-mesenchymal transition. About 80 percent of all cancers begin in the epithelial cells of organs.

Telltale surface protein identifies metastatic cells

The first crucial research step was to identify and study non-small cell lung cancer cells prone to metastasizing.

Yanan Yang, Ph.D., study first author and a postdoctoral fellow in Kurie's lab, studied lung cancer cells in mice, searching for markers of metastasis. He homed in on a surface protein called CD133.

"In primary lung tumors, CD133 cells are under 1 percent of cells," Yang said. "In metastatic lesions, more than 80 percent of the cells have CD133."

Follow up studies determined that CD133-expressing cells were located on the perimeter of tumors, ideally situated for metastasis. More than half of mice injected with CD133-positive lung cancer cells had metastatic cancer, compared to less than 20 percent of those injected with CD133-negative cells.

Intensive study of CD133 metastatic cells revealed that they highly expressed Notch ligands (proteins that bind to specific receptors on other cells). Yang said they separately depleted two Notch ligands - Jagged1 and Jagged2 - from tumor cells. Removing Jagged1 had no effect, but cells with little Jagged2 did not metastasize.

"Because epithelial-to-mesenchymal transition (EMT) is a very early step in metastasis," Yang said, "we thought Jagged2 might regulate EMT." When they knocked down Jagged2 again, they found levels of the EMT-stifling miR-200 increased.

External signals drive change

Additional research found that Jagged2 reduced miR-200 by tipping a delicate balance between the microRNA and a protein called GATA3, which inhibit one another. Stimulating production of more GATA3 reduced levels of miR-200.

"Jagged2 increases the levels of GATA3, which in turn binds to the promoter of miR-200 and suppresses production of miR-200," Yang said.

"The study is among the first to show that mir-200 is regulated by specific signals emanating from the environment surrounding cancer cells. These signals are keys to understanding metastasis", Yang said.

One surprise, Kurie said, is that GATA proteins had been thought to suppress tumors. "In this case it's exactly the opposite."

The next step is to determine which of the four known Notch receptors suppress miR-200 and promote metastasis. The drugs currently under study are designed to inhibit an enzyme that cleaves and activates all Notch receptors. Drugs that target specific Notch receptors might be more effective inhibitors of metastasis, Kurie said.

Funding for the project was provided by grants from the National Cancer Institute, MD Anderson's Lung Cancer Specialized Program in Research Excellence grant from NCI, the David M. Sather Memorial Fund, The Armour Family Lung Cancer Research Fund, the Dan L. Duncan Cancer Center at Baylor College of Medicine, The ASCO Cancer Foundation, and the International Association for the Study of Lung Cancer.

Co-authors with Yang and Kurie were Young-Ho Ahn, Don L. Gibbons, Yi Zang, Wei Lin, Nishan Thilaganthan, Cristina A. Alvarez, and Daniel C. Moreira, of MD Anderson's Department of Thoracic/Head and Neck Medical Oncology; Moreira also is with the Medical School, Tecnológico de Monterrey, Monterrey, Mexico; Chad J. Creighton, Dan L. Duncan Cancer Center, Baylor College of Medicine; and Philip A. Gregory and Gregory J. Goodall of the Centre for Cancer Biology, Hanson Institute, Adelaide, South Australia, Australia, and Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>