Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints drugs that prevent epilepsy, seizures after severe brain injury

16.07.2009
Rat study shows blocking TGF-beta halts brain changes associated with epilepsy

Drugs that block a growth factor receptor on brain cells may prevent epilepsy after brain damage, according to a new study appearing in the July 15 issue of the Journal of Neuroscience.

Daniela Kaufer, an assistant professor of integrative biology at the University of California, Berkeley, graduate student Luisa P. Cacheaux, and their Israeli colleagues, graduate student Yaron David and neurosurgeon Alon Friedman, found that they could prevent the brain changes leading to epilepsy in rats by treating the animals with a drug that blocks transforming growth factor-beta (TGF-beta) receptors.

"When we add the blockers, the hyper-excitability that you normally see after brain trauma is gone," Cacheaux said. "The blockers also prevent a majority of the gene expression changes that we see following brain insult."

While seizures can take weeks to show up in rats, for the current paper, the researchers followed the rats for only four days after brain injury and treatment with TGF-beta blockers. Nevertheless, preliminary EEG studies of the rats' brains indicated that most animals remained seizure-free after a month.

If the findings are confirmed in humans, a TGF-beta blocker may prevent many cases of epilepsy in accident victims or Iraqi war GIs who are victims of roadside bombs. Because of better medical care, many soldiers now survive severe traumatic brain injuries, yet those with severe head injuries are thought to have a 25 to 50 percent chance of eventually developing epileptic seizures. No treatment exists to prevent the development of epilepsy. Once epilepsy develops, drugs are the only option, and even those fail to control seizures in 30 percent of cases.

Because seizures develop weeks to years after an injury, there is a large window of opportunity in which patients could be treated with drugs to prevent the development of seizures, Kaufer said.

"The idea is to identify the brain injury patients that are very susceptible to epilepsy development – which may be possible to achieve using brain imaging – and then treat only those, not everybody, with a pretty benign drug that blocks the growth factors," she said. "At least in the rats, that works now."

The results are the culmination of more than 14 years of research to explore the hypothesis that trauma-induced epilepsy is caused by leakage of blood into the brain after injury, whether caused by trauma, brain tumors or infection, meningitis, or a hemorrhagic or ischemic stroke.

The idea originated with Friedman, who at the time was a physician in the Israeli army. Friedman, now an associate professor of physiology and neurosurgery at Israel's Ben-Gurion University of the Negev, hypothesized that breech of the blood brain barrier – a sheath of tightly joined cells that lines the capillaries in the brain to prevent intrusion of bacteria and potentially dangerous blood-borne molecules – somehow triggers events that destroy brain cells.

Friedman teamed up with Kaufer, then a graduate student at Hebrew University, on a series of experiments that has gradually provided support for the hypothesis and convinced many that this is a totally new and valuable way of looking at epilepsy. Over the years, their team systematically sifted through the components of the blood and, in 2007, reported that the main culprit in epileptogenesis seemed to be albumin, the main protein in blood serum.

In the current experiment, the researchers used serum albumin to trigger epileptogenesis in rats' brains and showed that albumin binds to TGF-beta receptors – there are two of them – and triggers the expression of a myriad of genes that are also turned on when the blood-brain barrier is breeched by other means. The genes expressed involve not only the normal TGF-beta pathway, but also genes involved in inflammation and in reducing inhibition of neurons. The actual damage is thought to be caused by uninhibited firing of neurons, so called hyper-excitability, that can exhaust and kill the neurons. Neuron death alters the nerve network in the brain, leading to a reorganization of neurons that creates short-circuits that precipitate seizures.

"Epilepsy is neurons firing together in synchrony, which leads to a storm of electricity," Kaufer said. "The brain by itself has mechanisms – release of inhibitory signals through inhibitory neurotransmitters – to shut down the firing. In epilepsy, you don't get shutdown of firing, and it spirals out of control.

"Here we have shown the beginning stages of the hyper-excitable state when a lot of inhibitory genes are being down-regulated, so that you don't have as much inhibition. And then the synchrony begins."

The team triggered the same processes by squirting TGF-beta1 into the brain, and were able to block these genetic changes by treating the brain with drugs that block both TGF-beta receptor 1 and TGF-beta receptor 2.

Kaufer noted that TGF-beta blockers might also prevent further damage in those with persistent seizures – a condition known as status epilepticus – because these non-stop seizures also open the blood brain barrier.

Interestingly, the albumin initially seems to be activating receptors on astrocytes, not neurons. Astrocytes, also called glial cells, are a population of "support cells" in the brain that research is showing may play an important role in many disease processes.

"The astrocytes really work well as sponges for glutamate and potassium ions, controlling neuronal excitability," Kaufer said. "Signaling in the TGF-beta pathway changes the properties of astrocytes, so you get higher potassium and glutamate in the vicinity of neurons and hyper-excitability, which makes the neurons start firing together, you get synchronous activity developing, and epilepsy follows."

Friedman continues to monitor treated rats with an electroencephalograph (EEG) to see what percentage of the rats goes on to develop epileptic seizures. Friedman and his group in Ben-Gurion's Brain Imaging Research Center are developing new imaging tools that allow measuring the blood-brain barrier opening in humans with brain injuries.

"You can have somebody with no epileptic seizures, but the barrier is open for weeks and months after the trauma. We have initial evidence to suggest that these patients are much more susceptible to the development of epilepsy," Friedman said.

Kaufer and her lab colleagues continue to explore the role of blood-brain barrier breech in epilepsy, and the impact of stress on the brain.

Other coauthors of the paper are Sebastian Ivens, a psychiatry resident, and Uwe Heinemann, a neurophysiologist, from the Institute of Neurophysiology at Charité Universitätsmedizin in Berlin; Alexander J. Lakhter and Guy Bar-Klein of the Zlotowski Center for Neuroscience at Ben-Gurion University; and Michael Shapira, UC Berkeley assistant professor of integrative biology. Kaufer and Cacheaux are also affiliated with UC Berkeley's Helen Wills Neuroscience Institute.

The work was supported by the CURE Foundation, German National Science Foundation, Mary Elizabeth Rennie Epilepsy Foundation, Israel Science Foundation and United States-Israel Binational Science Foundation.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>