Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study links inflammation and calcium signaling in heart attack

Research reveals new role for immune system pathway in post-heart attack inflammation

A new study led by University of Iowa researchers has found an unexpected new link between this inflammation in heart muscle following a heart attack and a previously known enzyme called calcium/calmodulin-dependent protein kinase II or CaM kinase II. The findings also reveal the involvement of an immune system gene -- complement factor B -- that has been implicated in other inflammatory diseases.

The study, published online March 9 in the Journal of Clinical Investigation, suggests that CaM kinase II inhibition could be a therapeutic target in heart disease, but by previously unknown pathways.

CaM kinase II is a pivotal enzyme that registers changes in calcium levels and oxidative stress and translates these signals into cellular effects, including changes in heart rate, cell proliferation and cell death. CaM kinase II also regulates gene expression -- which genes are turned on or off at any given time. Inhibition of CaM kinase II in mice protects the animals' hearts against some of the damaging effects of a heart attack.

To better understand how CaM kinase II pathways are involved in damage caused by heart attack, the UI researchers investigated the effect of CaM kinase II activity on gene expression during a heart attack. The study's lead author was Madhu Singh, Ph.D., UI research scientist, and the senior author was Mark Anderson, M.D., Ph.D., professor of internal medicine and molecular physiology and biophysics at the UI Roy J. and Lucille A. Carver College of Medicine and director of the Division of Cardiovascular Medicine.

"We used a mouse model in which CaM kinase II is inhibited in heart muscle cells. These mice are protected from many of the ill effects of heart attack," Singh said. "We compared a large number of genes that were expressed in the protected mice compared to the non-protected control mice. A particularly interesting finding was that a cluster of inflammatory genes was differently expressed depending on whether CaM kinase II was active or inhibited."

Specifically, the research showed that heart attack triggered increased expression of a set of pro-inflammatory genes, and inhibition of CaM kinase II substantially reduced this effect.

The team focused on the most highly regulated of these inflammatory genes -- complement factor B. The protein produced by this gene is involved in the innate immune system called the alternative complement pathway.

The team found that complement factor B protein is synthesized in heart muscle cells as part of an autoimmune response to heart attack and that complement factor B protein participates in the formation of the so-called membrane attack complex, which punctures holes in heart cell membranes.

"It was very surprising that heart muscle cells express complement factor B, an immune system protein, because traditionally these cells are known for their contraction function, which supports heart pumping, not as part of the immune response to injury," Singh said.

Complement factors are part of the first line of defense against pathogens. When complement pathways are triggered, a biological cascade is set in motion that results in the formation of a membrane attack complex – a group of proteins that can literally punch holes in the cell membrane of an invading microbe or an injured cell.

The UI team showed that the complement factor B produced in heart muscle cells helped form membrane attack complexes that were able to puncture the cell membranes of heart muscle cells in a petri dish. In addition, the researchers found that genetically engineered mice that did not express functional complement factor B were partly protected from heart attack -- showing reduced mortality and heart damage.

"Clearly, if this immune system response is induced during heart attack injury, it might amplify heart damage by poking holes in the cell membrane," Singh said. "Not only is the heart trying to recover from the injury induced by the heart attack, but it also has to deal with the consequences of the induced activity of the complement pathway, which is attacking the cell membranes.

"If we can reduce the extra burden on the heart by some means of inhibiting this activity, then clinically that might be useful, he added.

"These findings show a previously unanticipated connection between CaM kinase II activity and inflammation in heart muscle and show that this connection drives maladaptive responses to heart attack," said Anderson, who also holds the Potter-Lambert Chair in Cardiology. "By understanding these CaM kinase II signaling mechanisms that occur inside the cell we might arrive at new and better drug targets that act more specifically to treat a variety of heart problems."

Jennifer Brown | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>