Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links inflammation and calcium signaling in heart attack

10.03.2009
Research reveals new role for immune system pathway in post-heart attack inflammation

A new study led by University of Iowa researchers has found an unexpected new link between this inflammation in heart muscle following a heart attack and a previously known enzyme called calcium/calmodulin-dependent protein kinase II or CaM kinase II. The findings also reveal the involvement of an immune system gene -- complement factor B -- that has been implicated in other inflammatory diseases.

The study, published online March 9 in the Journal of Clinical Investigation, suggests that CaM kinase II inhibition could be a therapeutic target in heart disease, but by previously unknown pathways.

CaM kinase II is a pivotal enzyme that registers changes in calcium levels and oxidative stress and translates these signals into cellular effects, including changes in heart rate, cell proliferation and cell death. CaM kinase II also regulates gene expression -- which genes are turned on or off at any given time. Inhibition of CaM kinase II in mice protects the animals' hearts against some of the damaging effects of a heart attack.

To better understand how CaM kinase II pathways are involved in damage caused by heart attack, the UI researchers investigated the effect of CaM kinase II activity on gene expression during a heart attack. The study's lead author was Madhu Singh, Ph.D., UI research scientist, and the senior author was Mark Anderson, M.D., Ph.D., professor of internal medicine and molecular physiology and biophysics at the UI Roy J. and Lucille A. Carver College of Medicine and director of the Division of Cardiovascular Medicine.

"We used a mouse model in which CaM kinase II is inhibited in heart muscle cells. These mice are protected from many of the ill effects of heart attack," Singh said. "We compared a large number of genes that were expressed in the protected mice compared to the non-protected control mice. A particularly interesting finding was that a cluster of inflammatory genes was differently expressed depending on whether CaM kinase II was active or inhibited."

Specifically, the research showed that heart attack triggered increased expression of a set of pro-inflammatory genes, and inhibition of CaM kinase II substantially reduced this effect.

The team focused on the most highly regulated of these inflammatory genes -- complement factor B. The protein produced by this gene is involved in the innate immune system called the alternative complement pathway.

The team found that complement factor B protein is synthesized in heart muscle cells as part of an autoimmune response to heart attack and that complement factor B protein participates in the formation of the so-called membrane attack complex, which punctures holes in heart cell membranes.

"It was very surprising that heart muscle cells express complement factor B, an immune system protein, because traditionally these cells are known for their contraction function, which supports heart pumping, not as part of the immune response to injury," Singh said.

Complement factors are part of the first line of defense against pathogens. When complement pathways are triggered, a biological cascade is set in motion that results in the formation of a membrane attack complex – a group of proteins that can literally punch holes in the cell membrane of an invading microbe or an injured cell.

The UI team showed that the complement factor B produced in heart muscle cells helped form membrane attack complexes that were able to puncture the cell membranes of heart muscle cells in a petri dish. In addition, the researchers found that genetically engineered mice that did not express functional complement factor B were partly protected from heart attack -- showing reduced mortality and heart damage.

"Clearly, if this immune system response is induced during heart attack injury, it might amplify heart damage by poking holes in the cell membrane," Singh said. "Not only is the heart trying to recover from the injury induced by the heart attack, but it also has to deal with the consequences of the induced activity of the complement pathway, which is attacking the cell membranes.

"If we can reduce the extra burden on the heart by some means of inhibiting this activity, then clinically that might be useful, he added.

"These findings show a previously unanticipated connection between CaM kinase II activity and inflammation in heart muscle and show that this connection drives maladaptive responses to heart attack," said Anderson, who also holds the Potter-Lambert Chair in Cardiology. "By understanding these CaM kinase II signaling mechanisms that occur inside the cell we might arrive at new and better drug targets that act more specifically to treat a variety of heart problems."

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>