Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links inflammation and calcium signaling in heart attack

10.03.2009
Research reveals new role for immune system pathway in post-heart attack inflammation

A new study led by University of Iowa researchers has found an unexpected new link between this inflammation in heart muscle following a heart attack and a previously known enzyme called calcium/calmodulin-dependent protein kinase II or CaM kinase II. The findings also reveal the involvement of an immune system gene -- complement factor B -- that has been implicated in other inflammatory diseases.

The study, published online March 9 in the Journal of Clinical Investigation, suggests that CaM kinase II inhibition could be a therapeutic target in heart disease, but by previously unknown pathways.

CaM kinase II is a pivotal enzyme that registers changes in calcium levels and oxidative stress and translates these signals into cellular effects, including changes in heart rate, cell proliferation and cell death. CaM kinase II also regulates gene expression -- which genes are turned on or off at any given time. Inhibition of CaM kinase II in mice protects the animals' hearts against some of the damaging effects of a heart attack.

To better understand how CaM kinase II pathways are involved in damage caused by heart attack, the UI researchers investigated the effect of CaM kinase II activity on gene expression during a heart attack. The study's lead author was Madhu Singh, Ph.D., UI research scientist, and the senior author was Mark Anderson, M.D., Ph.D., professor of internal medicine and molecular physiology and biophysics at the UI Roy J. and Lucille A. Carver College of Medicine and director of the Division of Cardiovascular Medicine.

"We used a mouse model in which CaM kinase II is inhibited in heart muscle cells. These mice are protected from many of the ill effects of heart attack," Singh said. "We compared a large number of genes that were expressed in the protected mice compared to the non-protected control mice. A particularly interesting finding was that a cluster of inflammatory genes was differently expressed depending on whether CaM kinase II was active or inhibited."

Specifically, the research showed that heart attack triggered increased expression of a set of pro-inflammatory genes, and inhibition of CaM kinase II substantially reduced this effect.

The team focused on the most highly regulated of these inflammatory genes -- complement factor B. The protein produced by this gene is involved in the innate immune system called the alternative complement pathway.

The team found that complement factor B protein is synthesized in heart muscle cells as part of an autoimmune response to heart attack and that complement factor B protein participates in the formation of the so-called membrane attack complex, which punctures holes in heart cell membranes.

"It was very surprising that heart muscle cells express complement factor B, an immune system protein, because traditionally these cells are known for their contraction function, which supports heart pumping, not as part of the immune response to injury," Singh said.

Complement factors are part of the first line of defense against pathogens. When complement pathways are triggered, a biological cascade is set in motion that results in the formation of a membrane attack complex – a group of proteins that can literally punch holes in the cell membrane of an invading microbe or an injured cell.

The UI team showed that the complement factor B produced in heart muscle cells helped form membrane attack complexes that were able to puncture the cell membranes of heart muscle cells in a petri dish. In addition, the researchers found that genetically engineered mice that did not express functional complement factor B were partly protected from heart attack -- showing reduced mortality and heart damage.

"Clearly, if this immune system response is induced during heart attack injury, it might amplify heart damage by poking holes in the cell membrane," Singh said. "Not only is the heart trying to recover from the injury induced by the heart attack, but it also has to deal with the consequences of the induced activity of the complement pathway, which is attacking the cell membranes.

"If we can reduce the extra burden on the heart by some means of inhibiting this activity, then clinically that might be useful, he added.

"These findings show a previously unanticipated connection between CaM kinase II activity and inflammation in heart muscle and show that this connection drives maladaptive responses to heart attack," said Anderson, who also holds the Potter-Lambert Chair in Cardiology. "By understanding these CaM kinase II signaling mechanisms that occur inside the cell we might arrive at new and better drug targets that act more specifically to treat a variety of heart problems."

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>