Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links inflammation and calcium signaling in heart attack

10.03.2009
Research reveals new role for immune system pathway in post-heart attack inflammation

A new study led by University of Iowa researchers has found an unexpected new link between this inflammation in heart muscle following a heart attack and a previously known enzyme called calcium/calmodulin-dependent protein kinase II or CaM kinase II. The findings also reveal the involvement of an immune system gene -- complement factor B -- that has been implicated in other inflammatory diseases.

The study, published online March 9 in the Journal of Clinical Investigation, suggests that CaM kinase II inhibition could be a therapeutic target in heart disease, but by previously unknown pathways.

CaM kinase II is a pivotal enzyme that registers changes in calcium levels and oxidative stress and translates these signals into cellular effects, including changes in heart rate, cell proliferation and cell death. CaM kinase II also regulates gene expression -- which genes are turned on or off at any given time. Inhibition of CaM kinase II in mice protects the animals' hearts against some of the damaging effects of a heart attack.

To better understand how CaM kinase II pathways are involved in damage caused by heart attack, the UI researchers investigated the effect of CaM kinase II activity on gene expression during a heart attack. The study's lead author was Madhu Singh, Ph.D., UI research scientist, and the senior author was Mark Anderson, M.D., Ph.D., professor of internal medicine and molecular physiology and biophysics at the UI Roy J. and Lucille A. Carver College of Medicine and director of the Division of Cardiovascular Medicine.

"We used a mouse model in which CaM kinase II is inhibited in heart muscle cells. These mice are protected from many of the ill effects of heart attack," Singh said. "We compared a large number of genes that were expressed in the protected mice compared to the non-protected control mice. A particularly interesting finding was that a cluster of inflammatory genes was differently expressed depending on whether CaM kinase II was active or inhibited."

Specifically, the research showed that heart attack triggered increased expression of a set of pro-inflammatory genes, and inhibition of CaM kinase II substantially reduced this effect.

The team focused on the most highly regulated of these inflammatory genes -- complement factor B. The protein produced by this gene is involved in the innate immune system called the alternative complement pathway.

The team found that complement factor B protein is synthesized in heart muscle cells as part of an autoimmune response to heart attack and that complement factor B protein participates in the formation of the so-called membrane attack complex, which punctures holes in heart cell membranes.

"It was very surprising that heart muscle cells express complement factor B, an immune system protein, because traditionally these cells are known for their contraction function, which supports heart pumping, not as part of the immune response to injury," Singh said.

Complement factors are part of the first line of defense against pathogens. When complement pathways are triggered, a biological cascade is set in motion that results in the formation of a membrane attack complex – a group of proteins that can literally punch holes in the cell membrane of an invading microbe or an injured cell.

The UI team showed that the complement factor B produced in heart muscle cells helped form membrane attack complexes that were able to puncture the cell membranes of heart muscle cells in a petri dish. In addition, the researchers found that genetically engineered mice that did not express functional complement factor B were partly protected from heart attack -- showing reduced mortality and heart damage.

"Clearly, if this immune system response is induced during heart attack injury, it might amplify heart damage by poking holes in the cell membrane," Singh said. "Not only is the heart trying to recover from the injury induced by the heart attack, but it also has to deal with the consequences of the induced activity of the complement pathway, which is attacking the cell membranes.

"If we can reduce the extra burden on the heart by some means of inhibiting this activity, then clinically that might be useful, he added.

"These findings show a previously unanticipated connection between CaM kinase II activity and inflammation in heart muscle and show that this connection drives maladaptive responses to heart attack," said Anderson, who also holds the Potter-Lambert Chair in Cardiology. "By understanding these CaM kinase II signaling mechanisms that occur inside the cell we might arrive at new and better drug targets that act more specifically to treat a variety of heart problems."

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>