Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links chemicals widely found in plastics and processed food to elevated blood pressure in children and teens

22.05.2013
Data from nearly 3,000 children shows dietary exposure to certain plastics may play a hidden role in epidemic increases in childhood hypertension

Plastic additives known as phthalates (pronounced THAL-ates) are odorless, colorless and just about everywhere: They turn up in flooring, plastic cups, beach balls, plastic wrap, intravenous tubing and—according to the Centers for Disease Control and Prevention—the bodies of most Americans.

Once perceived as harmless, phthalates have come under increasing scrutiny. A growing collection of evidence suggests dietary exposure to phthalates (which can leech from packaging and mix with food) may cause significant metabolic and hormonal abnormalities, especially during early development.

Now, new research published this Wednesday in the Journal of Pediatrics suggests that certain types of phthalates could pose another risk to children: compromised heart health. Drawing on data from a nationally representative survey of nearly 3,000 children and teens, researchers at NYU Langone Medical Center, in collaboration with researchers at the University of Washington and Penn State University School of Medicine, have documented for the first time a connection between dietary exposure to DEHP (di-2-ethyhexylphthalate), a common class of phthalate widely used in industrial food production, and elevated systolic blood pressure, a measure of pressure in the arteries when the heart contracts.

"Phthalates can inhibit the function of cardiac cells and cause oxidative stress that compromises the health of arteries. But no one has explored the relationship between phthalate exposure and heart health in children" says lead author Leonardo Trasande, MD, MPP, associate professor of pediatrics, environmental medicine and population health at NYU Langone Medical Center. "We wanted to examine the link between phthalates and childhood blood pressure in particular given the increase in elevated blood pressure in children and the increasing evidence implicating exposure to environmental exposures in early development of disease."

Hypertension is clinically defined as a systolic blood-pressure reading above 140 mm Hg. It's most common in people over 50 years old, although the condition is becoming increasingly prevalent among children owing to the global obesity epidemic. Recent national surveys indicate that 14 percent of American adolescents now have pre-hypertension or hypertension. "Obesity is driving the trend but our findings suggest that environmental factors may also be a part of the problem," says Dr. Trasande. "This is important because phthalate exposure can be controlled through regulatory and behavioral interventions."

Researchers from NYU School of Medicine, the University of Washington and Penn State University School of Medicine examined six years of data from a nationally representative survey of the U.S. population administered by the National Centers for Health Statistics of the Centers for Disease Control and Prevention. Phthalates were measured in urine samples using standard analysis techniques. Controlling for a number of potential confounders, including race, socioeconomic status, body mass index, caloric intake and activity levels, the researchers found that every three-fold increase in the level of breakdown products of DEHP in urine correlated with a roughly one-millimeter mercury increase in a child's blood pressure. "That increment may seem very modest at an individual level, but on a population level such shifts in blood pressure can increase the number of children with elevated blood pressure substantially," says Dr. Trasande. "Our study underscores the need for policy initiatives that limit exposure to disruptive environmental chemicals, in combination with dietary and behavioral interventions geared toward protecting cardiovascular health."

This research was made possible through the generous support of KiDs of NYU Langone, an organization of parents, physicians, and friends that supports children's health services at New York University Langone Medical Center through philanthropy, community service, and advocacy.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of four hospitals – Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children's health services; and Rusk Rehabilitation, ranked the best rehabilitation program in New York and one of the top ten in the country since 1989, when U.S. News & World Report introduced its annual "Best Hospitals" rankings– plus NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Lorinda Klein | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>