Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis

23.05.2011
A new study by rheumatologists at Hospital for Special Surgery in New York has shown that a powerful pro-inflammatory protein, tumor necrosis factor (TNF), can also suppress aspects of inflammation.

The researchers say the identification of the mechanism of how this occurs could potentially lead to new treatments for diseases such as rheumatoid arthritis. The study was published May 22 online in advance of publication in the journal Nature Immunology.

"Prior to this study, TNF has long been known as a potent pro-inflammatory cytokine, but if you look carefully through the literature, there are hints that it also has some suppressive functions, but nothing was known about the mechanisms," said Lionel Ivashkiv, M.D., associate chief scientific officer and physician in the Arthritis and Tissue Degeneration Program at Hospital for Special Surgery who led the study. "This is really the first mechanism showing how TNF can turn inflammation down."

Because many proteins have homeostatic functions, both driving and suppressing certain actions so a cell can maintain internal equilibrium, researchers thought TNF might not be an exception. "Most strong activators in the immune system trigger a feedback response to restrain the amount of inflammation," Dr. Ivashkiv said.

To find out, researchers designed experiments stimulating macrophages with lipopolysaccharide (LPS), a prototypical inflammatory factor that stimulates receptors important in inflammation. In test tube studies, the researchers treated human monocytes and macrophages, cells that have a key role in inflammatory diseases, with TNF and then challenged these cells with LPS. They found that the TNF suppressed the inflammatory response of the macrophages and monocytes. They then gave mice low doses of TNF followed by high doses of LPS and found that the mice were protected from the effects of high dose LPS, which is usually lethal. They discovered that the mechanism by which TNF suppressed the inflammatory response involved a protein known as GSK3 (glycogen synthase kinase 3-alpha) and a gene known as TNFAIP3 that encodes the A20 protein. Experiments with a drug that can inhibit GSK3 as well as experiments with RNA interference of A20, which can block A20 gene function, helped identify the roles of this protein and gene.

The researchers say the findings could be used to develop potential therapies for diseases, such as rheumatoid arthritis. "We think it is relevant to rheumatoid arthritis, not only because the cells we are studying (the macrophages) are exactly the same cells that migrate into joints and make the inflammatory cytokines involved in rheumatoid arthritis, but because A20 is involved. TNFAIP3 is one of the best linked genes to rheumatoid arthritis," Dr. Ivashkiv said. "There are polymorphisms in the A20 gene that have been linked to RA pathogenesis."

The researchers hypothesize that patients who make less A20 are more susceptible to inflammation and thus rheumatoid arthritis. One approach to treating RA could be to increase A20 levels in patients who naturally make less A20 by manipulating GSK-3, since this study showed that GSK-3 influences A20. "The study sort of opens a line of investigation to understanding how A20 levels can be manipulated in patients with various diseases," Dr. Ivashkiv said.

The findings could be applied to other diseases besides arthritis. In conditions such as rheumatoid arthritis, you may want to boost A20, but in other settings such as cancer, where the macrophages are suppressed, you may want to inhibit A20 expression.

"What the study shows that is new is that TNF has suppressive functions in addition to its well-known activating functions," Dr. Ivashkiv said. "Before this study, people thought it might suppress adaptive immunity, but surprisingly we found that it actually suppresses a cell of the innate immune system, the macrophage, which is the same cell that makes it and, by doing that, it regulates its own production."

Other Hospital for Special Surgery scientists involved in the study include Sung Ho Park, Kyung-Hyun Park-Min, M.D.; Janice Chen, and Xiaoyu Hu, M.D., Ph.D.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology, No. 16 in neurology and No. 18 in geriatrics by U.S. News & World Report (2010-11), and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center, and has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu/.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>