Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies promising target for AIDS vaccine

01.04.2011
A section of the AIDS virus's protein envelope once considered an improbable target for a vaccine now appears to be one of the most promising, new research by Dana-Farber Cancer Institute scientists indicates.

The section, a twisting strand of protein known as the V3 loop, is an attractive vaccine target because immune system antibodies aimed at the loop may offer protection against multiple genetic subtypes of HIV-1, the virus that causes AIDS. This is a key prerequisite of any AIDS vaccine because the viruses mutate rapidly and by now comprise millions of different strains that are grouped into different genetic subtypes, or "clades." The researchers' findings are published online in the Public Library of Science journal PLoS One.

In the study, investigators injected a monoclonal antibody -- a preparation of millions of identical antibodies that fight viral infection -- into Asian monkeys known as macaques. The antibody came from a person infected with a specific clade of HIV-1. The macaques were then exposed to virus of a different clade. Investigators knew the antibody would latch onto a portion of the virus's V3 loop, potentially barring the virus from invading nearby cells, but they didn't know whether it would prevent infection from a separate subtype of the virus.

The results were striking: All of the treated monkeys were protected from infection by the monkey form of HIV-1, known as SHIV. Monkeys exposed to the virus without receiving the monoclonal antibody, by contrast, became heavily infected.

"This is the first time a monoclonal antibody made against an AIDS virus of one clade has provided complete protection against an AIDS virus of a different clade in animal models," said the study's senior author, Ruth Ruprecht, MD, PhD, of Dana-Farber. "Previous studies have shown that such neutralizing antibodies can protect macaques from infection within one clade; but as more clades of the AIDS virus evolve, it has been unclear whether such antibodies could shield across different clades and prevent infection. Now we have an answer."

AIDS vaccines need to be broadly effective, Ruprecht said, offering protection from a range of HIV-1 subtypes anywhere in the world. It is particularly important for such vaccines to shield against clade C, which accounts for almost 60 percent of worldwide AIDS cases and predominates in sub-Saharan Africa, India, and China. In many parts of the world, clade C has combined with clade B, but retains a clade C protein envelope. Ruprecht and her colleagues have showed that the antibody against the V3 loop prevented infection by a clade C virus.

The antibody treatment technique used in the study is unlikely to confer long-term protection against HIV-1 because the infected antibodies do not remain active in the body for very long. The value of the study is that it demonstrates that antibodies directed against the V3 loop of one clade of HIV-1 can create an immune system shield against another clade.

To translate this discovery into a vaccine, researchers need to devise a way to focus the body's immune system responses to the small portion of the V3 loop that is shared by viruses of different clades. The immune system could then generate its own protective antibodies against the virus. One way of accomplishing this may be to create small molecules that represent this special region inside the V3 loop so the immune system can recognize and attack it.

The study's findings represent something of a vindication for the V3 loop as an immune system target, Ruprecht remarked. While scientists have long known that V3 can spark an immune system response to HIV-1, the loop was thought to be a clever "decoy:" the body would produce antibodies that home in on V3, but these would be unable to block infection by slightly different versions of the AIDS virus. The V3 loop has long been known to mutate very rapidly. Viruses with slightly altered protein envelopes would then begin the infection process. The study has shown that a special region of V3 is a prime target, after all.

The study's co-lead authors are Jennifer Watkins, PhD, and Nagadenahalli Siddappa, PhD, of Dana-Farber. Other Dana-Farber co-authors are Samir Lakhashe, PhD, Michael Humbert, PhD, Anton Sholukh, PhD, Girish Hemashettar, Yin Ling Wong, John Yoon, and Wendy Wang. Francis Novembre, PhD, Francois Villinger, DVM, PhD, Chris Ibegbu, PhD, and Kalpana Patel of the Yerkes National Primate Research Center at Emory University in Atlanta conducted the studies in animals. Other co-authors include Davide Corti, Gloria Agatic, Fabrizia Vanzetta, and Siro Bianchi, of Humabs SAGL, in Bellinzona, Switzerland; Jonathan Heeney, DVM, PhD, of the University of Cambridge, England; and Federica Sallusto PhD, and Antonio Lanzavecchia, MD, of the Institute for Research in Biomedicine, Bellinzona, Switzerland.

The study was funded by grants from the National Institutes of Health, the Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery, and the Center for AIDS Research Immunology Core.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>