Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key player in motor neuron death in Lou Gehrig's disease

27.03.2014

Amyotrophic lateral sclerosis, also known as Lou Gehrig's disease, is marked by a cascade of cellular and inflammatory events that weakens and kills vital motor neurons in the brain and spinal cord.

The process is complex, involving cells that ordinarily protect the neurons from harm. Now, a new study by scientists in The Research Institute at Nationwide Children's Hospital points to a potential culprit in this good-cell-gone-bad scenario, a key step toward the ultimate goal of developing a treatment.

Motor neurons, or nerve cells, in the brain and spinal cord control the function of muscles throughout the body. In amyotrophic lateral sclerosis (ALS), motor neurons die and muscles weaken. Patients gradually lose the ability to move and as the disease progresses, are unable to breathe on their own. Most people with ALS die from respiratory failure within 3 to 5 years from the onset of symptoms.

For the study, published online this month in Neuron, researchers examined a protein involved in transcriptional regulation, called nuclear factor-kappa B (NF-κB), known to play a role in the neuroinflammatory response common in ALS. NF-ƘB has also been linked to cancer and a number of other inflammatory and autoimmune diseases.

Using animal models, the researchers studied disease progression in mice in which NF-ƘB had been inhibited in two different cell types — astrocytes, the most abundant cell type in the human brain and supporters of neuronal function; and microglia, macrophages in the brain and spinal cord that act as the first and main form of defense against invading pathogens in the central nervous system. Inhibiting NF-ƘB in microglia in mice slowed disease progression by 47 percent, says Brian Kaspar, MD, a principal investigator in the Center for Gene Therapy at Nationwide Children's and senior author of the new study.

"The field has identified different cell types in addition to motor neurons involved in this disease, so one of our approaches was to find out what weapons these cells might be using to kill motor neurons," Dr. Kaspar says. "And our findings suggest that the microglia utilize an NF-κB-mediated inflammatory response as one of its weapons."

Inhibiting the protein in astrocytes had no impact on disease progression, so the search for the weapons that cell type uses against motor neurons continues. These preliminary findings also don't tell scientists how or why NF-κB turns the ordinarily protective microglia into neuron-killing molecules. But despite the mysteries that remain, the study moves scientists closer to finding a treatment for ALS.

The search for an ALS therapy has been focused in two directions: identifying the trigger that leads to disease onset and understanding the process that leads to disease progression. Changes in motor neurons are involved in disease onset, but disease progression seems to be dictated by changes to astrocytes, microglia and oligodendrocytes. Some cases of ALS are hereditary but the vast majority of patients have no family ties to the disease. The complexity of the disease and the lack of a clear familiar tie make screening before disease onset nearly impossible, highlighting the importance of slowing the disease, Dr. Kaspar says.

"Focusing on stopping the changes that occur in astrocytes and microglia has clinical relevance because most people don't know they're getting ALS, says Dr. Kaspar, who also is an associate professor of pediatrics and neurosciences at The Ohio State University College of Medicine. "We have identified a pathway in microglia that may be targeted to ultimately slow disease progression in ALS and are exploring potential therapeutic strategies and may have broader implications for diseases such as Alzheimer's and Parkinson's Disease amongst others."

Gina Bericchia | EurekAlert!
Further information:
http://www.nationwidechildrens.org/

Further reports about: astrocytes death diseases findings microglia muscles neurons progression spinal weapons

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>