Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies chemical changes in brains of people at risk for Alzheimer's disease

25.08.2011
A brain imaging scan identifies biochemical changes in the brains of normal people who might be at risk for Alzheimer's disease, according to research published in the August 24, 2011, online issue of Neurology®, the medical journal of the American Academy of Neurology.

The study of 311 people in their 70s and 80s with no cognitive problems, from the population-based Mayo Clinic Study of Aging, used an advanced brain imaging technique called proton MR spectroscopy to see if they had abnormalities in several brain metabolites that may be biomarkers for Alzheimer's disease.

They also had PET scans to assess the level of amyloid-beta deposits, or plaques, in the brain that are one of the first signs of changes in the brain due to Alzheimer's disease. The participants were also given tests of memory, language and other skills.

"There is increasing evidence that Alzheimer disease is associated with changes in the brain that start many years before symptoms develop," said Jonathan M. Schott, MD, of the Dementia Research Centre, University College London in England and a member of the American Academy of Neurology, who wrote an editorial accompanying the study. "If we could identify people in whom the disease process has started but symptoms have not yet developed, we would have a potential window of opportunity for new treatments—as and when they become available—to prevent or delay the start of memory loss and cognitive decline."

The study found that 33 percent of the participants had significantly high levels of amyloid-beta deposits in their brains. Those with high levels of amyloid-beta deposits also tended to have high levels of the brain metabolites myoinositol/creatine and choline/creatine. People with high levels of choline/creatine were more likely to have lower scores on several of the cognitive tests, regardless of the amount of amyloid-beta deposits in their brains.

"This relationship between amyloid-beta deposits and these metabolic changes in the brain are evidence that some of these people may be in the earliest stages of the disease," said study author Kejal Kantarci, MD, MSc, of the Mayo Clinic in Rochester, Minn., and a member of the American Academy of Neurology. "More research is needed that follows people over a period of years to determine which of these individuals will actually develop the disease and what the relationship is between the amyloid deposits and the metabolites." At the present time, MR spectroscopy cannot be used for diagnosis.

The study was supported by the Paul Beeson Award in Aging, National Institutes of Health and the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program of the Mayo Foundation.

The American Academy of Neurology, an association of more than 24,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as epilepsy, dystonia, migraine, Huntington's disease, and dementia.

For more information about the American Academy of Neurology, visit http://www.aan.com.

VIDEO:
http://www.youtube.com/AANChannel
TEXT:
http://www.aan.com/press
TWEETS:
http://www.twitter.com/AANPublic

Leah Reilly | EurekAlert!
Further information:
http://www.aan.com

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>