Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Link Between Chronic Depression and Accelerated Immune Cell Aging

06.04.2011
Certain cases of major depression are associated with premature aging of immune cells, which may make people more susceptible to other serious illness, according to findings from a new UCSF-led study.

The findings indicate that accelerated cell aging does not occur in all depressed individuals, but is dependent upon how long someone is depressed, particularly if that depression goes untreated. The study was published online in March 2011 by the journal PLoS One and is available here.

“There’s a lot more to depression than feeling blue,” said first author Owen Wolkowitz, MD, a professor of psychiatry at UCSF. “As if feeling depressed is not bad enough, we are finding that long-term depression may be associated with damage to cells in the body, and this may predispose patients to certain physical diseases.”

Previously considered a mental illness affecting only the brain, major depressive disorder, or MDD, now is believed to be tied to significant physical damage outside the brain, explained Wolkowitz. For example, depressed individuals are more likely to develop the diseases of advanced age, including diabetes, heart disease, osteoporosis, stroke and dementia.

In probing the links between depression and physical disease, the research team explored aging of the immune system as measured by the shortening of telomeres in immune cells taken from the blood.

Telomeres are tiny units of DNA-protein complexes that seal off and protect the ends of chromosomes and act as a biological clock controlling a cell’s life. Telomere shortening predicts earlier onset of several major age-related diseases and earlier mortality, and may serve as one index of human longevity.

The researchers compared the length of telomeres in 18 individuals with MDD not currently receiving antidepressant medications to the length of telomeres in 17 healthy controls. Overall, telomeres of the depressed group did not differ from those of the healthy group; however, individuals with nine or more years of untreated chronic depression showed significant telomere shortening, even after accounting for chronological age. The degree of shortening in this subset of the depressed group corresponded to about seven years of “accelerated cell aging.”

Telomere shortening also was associated with higher levels of inflammation and oxidative stress in patients, both linked to cell damage and premature aging. Oxidative stress is an imbalance between destructive “free radical” molecules and the body's ability to neutralize them with antioxidants. The authors suggest that telomere shortening in very chronic depression may reflect an individual’s cumulative exposure to biochemical stressors that promote cell death and increase the likelihood of physical disease.

“While this finding itself might seem depressing, there is yet good news: many lifestyle factors like exercise and aspects of diet have been linked to longer telomeres,” said co-author Elissa Epel, PhD, an associate professor in the UCSF Department of Psychiatry. “So while our personal history matters, it is possible that what we do today may matter even more, in terms of protecting our telomeres.”

Epel and co-author Elizabeth Blackburn, PhD, UCSF professor of biochemistry and biophysics, pioneered research on the impact of psychological stress on several biological markers of cell aging. Blackburn shared the 2009 Nobel Prize in Physiology or Medicine for her telomere research and co-discovery of the cellular enzyme telomerase. Telomerase helps repair and restore telomeres, protecting cells from damage related to premature aging.

In related work, the research team recently reported in the journal Molecular Psychiatry, available here, that individuals with MDD show increased activity of the telomerase enzyme. Depressed individuals with the lowest telomerase activity before antidepressant treatment, and those with the greatest increase in activity during treatment, showed the strongest antidepressant responses. These findings suggest that the seemingly paradoxical increase of telomerase in untreated depressed individuals indicates their bodies are attempting to compensate for the damage to their telomeres. Increases during treatment, on the other hand, may represent true improvement in depression.

“We speculate that telomerase may provide a biological marker for antidepressant responses,” Wolkowitz said. “Once we better understand these systems, we will be in a stronger position to treat depression and possibly prevent some of its associated physical illnesses.”

As a next step, UCSF researchers plan to replicate these preliminary findings in a larger sample of depressed individuals in order to explain why certain people develop shortened telomeres and physical disease, and how that process can be combated. Depressed individuals not taking antidepressants are currently being enrolled for this ongoing study, and interested participants may inquire at (415) 476-7254 or mood@ucsf.edu.

Additional UCSF co-authors are Synthia Mellon, PhD; Jue Lin, PhD; Victor Reus, MD; Rebecca Rosser; Heather Burke, PhD; Eve Kupferman, PhD; Mariana Compagnone, MD; and J. Craig Nelson, MD. Co-authors from other institutions are Firdaus Dhabhar, PhD, of Stanford and Yali Su, PhD, of Kronos Science Laboratory.

The studies were funded by the National Institute of Mental Health, the O’Shaughnessy Foundation, the Bernard and Barbro Osher Foundation, and UCSF. Additionally, Blackburn, Epel and Lin are co-founders of a new company called Telome Health, Inc., which is developing applications of telomere biology to identify disease risk and to improve wellness.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. More information is available at www.ucsf.edu.

Kate Vidinsky | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>