Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds linchpin of skin response to UVA light

22.01.2013
Last year, a team of researchers at Brown University discovered that certain skin cells use a light-sensitive receptor found outside of the eye to sense ultraviolet light and quickly begin pumping out melanin to protect against DNA damage.

In a new study, lab members identify a key player in that biomolecular chain of events that could someday become a pharmacological target for improving this protective response.

The new discovery, published the week of Jan. 21 in the Proceedings of the National Academy of Sciences, is that human melaoncyte skin cells rely on an ion channel called TRPA1 to allow a flood of calcium ions into the cells when they are exposed to UVA light. The resulting abundance of calcium ions signals the cell to begin making melanin, the pigment responsible for the tanning response in people.

Several experiments described in the paper show that TRPA1, which is known from a number of other appearances elsewhere in the body, is an essential step in the skin's response to UVA light, said senior author Elena Oancea, assistant professor of medical science in the Department of Molecular Pharmacology, Physiology, and Biotechnology at Brown.

As a matter of basic science, the finding strengthens the evidence of a striking parallel between the skin's response to UVA light and the way the eye detects light.

"Its exciting because it confirms this phototransduction pathway is similar to those found in the eye. It consists of a light-sensitive receptor, molecular signaling cascade, and an ion channel," Oancea said. "The involvement of an ion channel makes this pathway a lot more like other phototransduction pathways."

In other parts of the body, TRPA1 has been shown to help detect pungent but benign chemicals, such as those in intensely flavorful foods. Oancea and lead author Nicholas Bellono said the chemical sensitivity of TRPA1 offers the intriguing possibility that it could become a target for experiments to boost melanin production.

"TRPA1 ion channels are involved in the detection of pungent chemicals such as cinnamaldehyde, wasabi, and mustard oil, and we've now found it's important for this melanin response," Bellono said. "There is a possibility that we can pharmacologically alter pigmentation through regulation of this ion channel."

Oancea and Bellono emphasized, however, that people who go out in the sun should always take widely recommended precautions to protect their skin, such as using high-SPF commercial sunscreens or wearing protective hats and clothing.

Finding the channel

From the prior research in Oancea's lab, Bellono knew he was looking for some kind of molecular pathway that would start with a light sensitive receptor and trigger an elevated level of calcium ions in the melanocytes.

It seemed possible that a TRP ion channel would be involved because TRPs are involved in phototransduction elsewhere in the body that lead to an increase in intracellular calcium. There are, however, many types of TRP channels, and the molecular identity of the UVA-activated channel in melanocytes was not apparent. Oancea confessed that she even suspected another as the culprit. But many experiments later, the team hit on TRPA1 and amassed considerable evidence to confirm its vital role.

In one experiment, for example, they treated melanocytes with "antagonist" chemicals known to block TRPA1 activity. They then exposed the cells to UVA light and measured the resulting electrical response. The cells blocked with the antagonists had 80 to 90 percent reduction in current compared to the unhindered cells.

They used a similar technique of specifically blocking TRPA1 activity to show that the ion channel contributes greatly to the presence of calcium ions after UVA exposure compared to unhindered melanocyte cells. They also found melanocytes produce little or no melanin following exposure to UVA when TRPA1 is blocked.

They did not, however, do experiments to see whether adding TRPA1 stimulating substances could increase melanin production.

In addition to Bellono and Oancea, other authors on the paper are Laura Kammel and Anita Zimmerman.

The National Science Foundation, the National Institutes of Health (grant T32-GM077995), and Brown University funded the research.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>