Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new gene mutations that lead to enlarged brain size, cancer, autism, epilepsy

02.07.2012
Researchers shed light on molecular cause of childhood’s worst conditions as first step toward developing more effective treatments

A research team led by Seattle Children's Research Institute has discovered new gene mutations associated with markedly enlarged brain size, or megalencephaly. Mutations in three genes, AKT3, PIK3R2 and PIK3CA, were also found to be associated with a constellation of disorders including cancer, hydrocephalus, epilepsy, autism, vascular anomalies and skin growth disorders.

The study, "De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes," was published online June 24 in Nature Genetics.

The discovery offers several important lessons and hope for the future in medicine. First, the research team discovered additional proof that the genetic make-up of a person is not completely determined at the moment of conception. Researchers previously recognized that genetic changes may occur after conception, but this was believed to be quite rare. Second, discovery of the genetic causes of these human diseases, including developmental disorders, may also lead directly to new possibilities for treatment.

AKT3, PIK3R2 and PIK3CA are present in all humans, but mutations in the genes are what lead to conditions including megalencephaly, cancer and other disorders. PIK3CA is a known cancer-related gene, and appears able to make cancer more aggressive. Scientists at Boston Children's Hospital recently published similar findings related to PIK3CA and a rare condition known as CLOVES syndrome in the American Journal of Human Genetics.

Physician researcher James Olson, MD, PhD, a pediatric cancer expert at Seattle Children's and Fred Hutchinson Cancer Research Center who was not affiliated with the study, acknowledged the two decades-worth of work that led to the findings. "This study represents ideal integration of clinical medicine and cutting-edge genomics," he said. "I hope and believe that the research will establish a foundation for successfully using drugs that were originally developed to treat cancer in a way that helps normalize intellectual and physical development of affected children. The team 'knocked it out of the park' by deep sequencing exceptionally rare familial cases and unrelated cases to identify the culprit pathway." The genes— AKT3, PIK3R2 and PIK3CA—all encode core components of the phosphatidylinositol-3-kinase (P13K)/AKT pathway, the "culprit pathway" referenced by Olson.

The research provides a first, critical step in solving the mystery behind chronic childhood conditions and diseases. At the bedside, children with these conditions could see new treatments in the next decade. "This is a huge finding that provides not only new insight for certain brain malformations, but also, and more importantly, provides clues for what to look for in less severe cases and in conditions that affect many children," said William Dobyns, MD, a geneticist at Seattle Children's Research Institute. "Kids with cancer, for example, do not have a brain malformation, but they may have subtle growth features that haven't yet been identified. Physicians and researchers can now take an additional look at these genes in the search for underlying causes and answers."

Researchers at Seattle Children's Research Institute will now delve more deeply into the findings, with an aim to uncover even more about the potential medical implications for children. "Based on what we've found, we believe that we can eventually reduce the burden of and need for surgery for kids with hydrocephalus and change the way we treat other conditions, including cancer, autism and epilepsy," said Jean-Baptiste Rivière, PhD, at Seattle Children's Research Institute. "This research truly helps advance the concept of personalized medicine."

Drs. Dobyns, Rivière and team made this discovery through exome sequencing, a strategy used to selectively sequence the coding regions of the genome as an inexpensive but effective alternative to whole genome sequencing. An exome is the most functionally relevant part of a genome, and is most likely to contribute to the phenotype, or observed traits and characteristics, of an organism.

Background On Researchers

Seattle Children's Research Institute conducted this study in collaboration with teams from University of Washington Genome Sciences Department, FORGE (Finding of Rare Disease Genes) Canada Consortium, Cedars Sinai Medical Center and University of Sussex.

Dr. Dobyns, who is also a UW professor of pediatrics, is a renowned researcher whose life-long work has been to try to identify the causes of children's developmental brain disorders such as megalencephaly. He discovered the first known chromosome abnormality associated with lissencephaly (Miller-Dieker syndrome) while still in training in child neurology at Texas Children's Hospital in 1983. That research led, 10 years later, to the discovery by Dobyns and others of the first lissencephaly gene known as LIS1.

Dr. Rivière is supported by a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research. As a lead researcher in the Dobyns lab, he also identified two new genes that cause Baraitser-Winter syndrome, a rare smooth brain malformation.

Co-authors on this study include: Jean-Baptiste Rivière, PhD, Banting Postdoctoral Fellow at Seattle Children's Research Institute; Judith St-Onge, Seattle Children's Research Institute; Christopher Sullivan, Seattle Children's Research Institute; Thomas Ward, Seattle Children's Research Institute; Ghayda Mirzaa, MD, University of Chicago; Brian O'Roak, PhD, University of Washington; Jay Shendure, MD, PhD, University of Washington; Mark O'Driscoll, PhD, University of Sussex; John Graham, MD, ScD, Cedars Sinai Medical Center; Kym Boycott, MD, PhD, University of Ottawa, Children's Hospital of Eastern Ontario; and many other physicians and scientists from North America and Europe.

Additional Resources

"De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes": http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2331.html

"Researchers find gene for 9-year-old girl's 1-in-a-million disease", CommonHealth/WBUR, May 2012: http://commonhealth.wbur.org/2012/05/life-of-riley-gene-cloves

"Cause of rare growth disease discovered", MedicalXpress, June 2012: http://medicalxpress.com/news/2012-06-rare-growth-disease.html

"Gene Mutations Cause Massive Brain Asymmetry", UC San Diego Health System, June 2012: http://health.ucsd.edu/news/releases/Pages/2012-25-hemimegalencephaly.aspx

About Seattle Children's Research Institute

At the forefront of pediatric medical research, Seattle Children's Research Institute is setting new standards in pediatric care and finding new cures for childhood diseases. Internationally recognized scientists and physicians at the Research Institute are advancing new discoveries in cancer, genetics, immunology, pathology, infectious disease, injury prevention and bioethics. With Seattle Children's Hospital and Seattle Children's Hospital Foundation, the Research Institute brings together the best minds in pediatric research to provide patients with the best care possible. Children's serves as the primary teaching, clinical and research site for the Department of Pediatrics at the University of Washington School of Medicine, which consistently ranks as one of the best pediatric departments in the country. For more information, visit http://www.seattlechildrens.org/research.

Mary Guiden | EurekAlert!
Further information:
http://www.seattlechildrens.org

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>