Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new gene mutations that lead to enlarged brain size, cancer, autism, epilepsy

02.07.2012
Researchers shed light on molecular cause of childhood’s worst conditions as first step toward developing more effective treatments

A research team led by Seattle Children's Research Institute has discovered new gene mutations associated with markedly enlarged brain size, or megalencephaly. Mutations in three genes, AKT3, PIK3R2 and PIK3CA, were also found to be associated with a constellation of disorders including cancer, hydrocephalus, epilepsy, autism, vascular anomalies and skin growth disorders.

The study, "De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes," was published online June 24 in Nature Genetics.

The discovery offers several important lessons and hope for the future in medicine. First, the research team discovered additional proof that the genetic make-up of a person is not completely determined at the moment of conception. Researchers previously recognized that genetic changes may occur after conception, but this was believed to be quite rare. Second, discovery of the genetic causes of these human diseases, including developmental disorders, may also lead directly to new possibilities for treatment.

AKT3, PIK3R2 and PIK3CA are present in all humans, but mutations in the genes are what lead to conditions including megalencephaly, cancer and other disorders. PIK3CA is a known cancer-related gene, and appears able to make cancer more aggressive. Scientists at Boston Children's Hospital recently published similar findings related to PIK3CA and a rare condition known as CLOVES syndrome in the American Journal of Human Genetics.

Physician researcher James Olson, MD, PhD, a pediatric cancer expert at Seattle Children's and Fred Hutchinson Cancer Research Center who was not affiliated with the study, acknowledged the two decades-worth of work that led to the findings. "This study represents ideal integration of clinical medicine and cutting-edge genomics," he said. "I hope and believe that the research will establish a foundation for successfully using drugs that were originally developed to treat cancer in a way that helps normalize intellectual and physical development of affected children. The team 'knocked it out of the park' by deep sequencing exceptionally rare familial cases and unrelated cases to identify the culprit pathway." The genes— AKT3, PIK3R2 and PIK3CA—all encode core components of the phosphatidylinositol-3-kinase (P13K)/AKT pathway, the "culprit pathway" referenced by Olson.

The research provides a first, critical step in solving the mystery behind chronic childhood conditions and diseases. At the bedside, children with these conditions could see new treatments in the next decade. "This is a huge finding that provides not only new insight for certain brain malformations, but also, and more importantly, provides clues for what to look for in less severe cases and in conditions that affect many children," said William Dobyns, MD, a geneticist at Seattle Children's Research Institute. "Kids with cancer, for example, do not have a brain malformation, but they may have subtle growth features that haven't yet been identified. Physicians and researchers can now take an additional look at these genes in the search for underlying causes and answers."

Researchers at Seattle Children's Research Institute will now delve more deeply into the findings, with an aim to uncover even more about the potential medical implications for children. "Based on what we've found, we believe that we can eventually reduce the burden of and need for surgery for kids with hydrocephalus and change the way we treat other conditions, including cancer, autism and epilepsy," said Jean-Baptiste Rivière, PhD, at Seattle Children's Research Institute. "This research truly helps advance the concept of personalized medicine."

Drs. Dobyns, Rivière and team made this discovery through exome sequencing, a strategy used to selectively sequence the coding regions of the genome as an inexpensive but effective alternative to whole genome sequencing. An exome is the most functionally relevant part of a genome, and is most likely to contribute to the phenotype, or observed traits and characteristics, of an organism.

Background On Researchers

Seattle Children's Research Institute conducted this study in collaboration with teams from University of Washington Genome Sciences Department, FORGE (Finding of Rare Disease Genes) Canada Consortium, Cedars Sinai Medical Center and University of Sussex.

Dr. Dobyns, who is also a UW professor of pediatrics, is a renowned researcher whose life-long work has been to try to identify the causes of children's developmental brain disorders such as megalencephaly. He discovered the first known chromosome abnormality associated with lissencephaly (Miller-Dieker syndrome) while still in training in child neurology at Texas Children's Hospital in 1983. That research led, 10 years later, to the discovery by Dobyns and others of the first lissencephaly gene known as LIS1.

Dr. Rivière is supported by a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research. As a lead researcher in the Dobyns lab, he also identified two new genes that cause Baraitser-Winter syndrome, a rare smooth brain malformation.

Co-authors on this study include: Jean-Baptiste Rivière, PhD, Banting Postdoctoral Fellow at Seattle Children's Research Institute; Judith St-Onge, Seattle Children's Research Institute; Christopher Sullivan, Seattle Children's Research Institute; Thomas Ward, Seattle Children's Research Institute; Ghayda Mirzaa, MD, University of Chicago; Brian O'Roak, PhD, University of Washington; Jay Shendure, MD, PhD, University of Washington; Mark O'Driscoll, PhD, University of Sussex; John Graham, MD, ScD, Cedars Sinai Medical Center; Kym Boycott, MD, PhD, University of Ottawa, Children's Hospital of Eastern Ontario; and many other physicians and scientists from North America and Europe.

Additional Resources

"De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes": http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2331.html

"Researchers find gene for 9-year-old girl's 1-in-a-million disease", CommonHealth/WBUR, May 2012: http://commonhealth.wbur.org/2012/05/life-of-riley-gene-cloves

"Cause of rare growth disease discovered", MedicalXpress, June 2012: http://medicalxpress.com/news/2012-06-rare-growth-disease.html

"Gene Mutations Cause Massive Brain Asymmetry", UC San Diego Health System, June 2012: http://health.ucsd.edu/news/releases/Pages/2012-25-hemimegalencephaly.aspx

About Seattle Children's Research Institute

At the forefront of pediatric medical research, Seattle Children's Research Institute is setting new standards in pediatric care and finding new cures for childhood diseases. Internationally recognized scientists and physicians at the Research Institute are advancing new discoveries in cancer, genetics, immunology, pathology, infectious disease, injury prevention and bioethics. With Seattle Children's Hospital and Seattle Children's Hospital Foundation, the Research Institute brings together the best minds in pediatric research to provide patients with the best care possible. Children's serves as the primary teaching, clinical and research site for the Department of Pediatrics at the University of Washington School of Medicine, which consistently ranks as one of the best pediatric departments in the country. For more information, visit http://www.seattlechildrens.org/research.

Mary Guiden | EurekAlert!
Further information:
http://www.seattlechildrens.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>