Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new gene mutations that lead to enlarged brain size, cancer, autism, epilepsy

02.07.2012
Researchers shed light on molecular cause of childhood’s worst conditions as first step toward developing more effective treatments

A research team led by Seattle Children's Research Institute has discovered new gene mutations associated with markedly enlarged brain size, or megalencephaly. Mutations in three genes, AKT3, PIK3R2 and PIK3CA, were also found to be associated with a constellation of disorders including cancer, hydrocephalus, epilepsy, autism, vascular anomalies and skin growth disorders.

The study, "De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes," was published online June 24 in Nature Genetics.

The discovery offers several important lessons and hope for the future in medicine. First, the research team discovered additional proof that the genetic make-up of a person is not completely determined at the moment of conception. Researchers previously recognized that genetic changes may occur after conception, but this was believed to be quite rare. Second, discovery of the genetic causes of these human diseases, including developmental disorders, may also lead directly to new possibilities for treatment.

AKT3, PIK3R2 and PIK3CA are present in all humans, but mutations in the genes are what lead to conditions including megalencephaly, cancer and other disorders. PIK3CA is a known cancer-related gene, and appears able to make cancer more aggressive. Scientists at Boston Children's Hospital recently published similar findings related to PIK3CA and a rare condition known as CLOVES syndrome in the American Journal of Human Genetics.

Physician researcher James Olson, MD, PhD, a pediatric cancer expert at Seattle Children's and Fred Hutchinson Cancer Research Center who was not affiliated with the study, acknowledged the two decades-worth of work that led to the findings. "This study represents ideal integration of clinical medicine and cutting-edge genomics," he said. "I hope and believe that the research will establish a foundation for successfully using drugs that were originally developed to treat cancer in a way that helps normalize intellectual and physical development of affected children. The team 'knocked it out of the park' by deep sequencing exceptionally rare familial cases and unrelated cases to identify the culprit pathway." The genes— AKT3, PIK3R2 and PIK3CA—all encode core components of the phosphatidylinositol-3-kinase (P13K)/AKT pathway, the "culprit pathway" referenced by Olson.

The research provides a first, critical step in solving the mystery behind chronic childhood conditions and diseases. At the bedside, children with these conditions could see new treatments in the next decade. "This is a huge finding that provides not only new insight for certain brain malformations, but also, and more importantly, provides clues for what to look for in less severe cases and in conditions that affect many children," said William Dobyns, MD, a geneticist at Seattle Children's Research Institute. "Kids with cancer, for example, do not have a brain malformation, but they may have subtle growth features that haven't yet been identified. Physicians and researchers can now take an additional look at these genes in the search for underlying causes and answers."

Researchers at Seattle Children's Research Institute will now delve more deeply into the findings, with an aim to uncover even more about the potential medical implications for children. "Based on what we've found, we believe that we can eventually reduce the burden of and need for surgery for kids with hydrocephalus and change the way we treat other conditions, including cancer, autism and epilepsy," said Jean-Baptiste Rivière, PhD, at Seattle Children's Research Institute. "This research truly helps advance the concept of personalized medicine."

Drs. Dobyns, Rivière and team made this discovery through exome sequencing, a strategy used to selectively sequence the coding regions of the genome as an inexpensive but effective alternative to whole genome sequencing. An exome is the most functionally relevant part of a genome, and is most likely to contribute to the phenotype, or observed traits and characteristics, of an organism.

Background On Researchers

Seattle Children's Research Institute conducted this study in collaboration with teams from University of Washington Genome Sciences Department, FORGE (Finding of Rare Disease Genes) Canada Consortium, Cedars Sinai Medical Center and University of Sussex.

Dr. Dobyns, who is also a UW professor of pediatrics, is a renowned researcher whose life-long work has been to try to identify the causes of children's developmental brain disorders such as megalencephaly. He discovered the first known chromosome abnormality associated with lissencephaly (Miller-Dieker syndrome) while still in training in child neurology at Texas Children's Hospital in 1983. That research led, 10 years later, to the discovery by Dobyns and others of the first lissencephaly gene known as LIS1.

Dr. Rivière is supported by a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research. As a lead researcher in the Dobyns lab, he also identified two new genes that cause Baraitser-Winter syndrome, a rare smooth brain malformation.

Co-authors on this study include: Jean-Baptiste Rivière, PhD, Banting Postdoctoral Fellow at Seattle Children's Research Institute; Judith St-Onge, Seattle Children's Research Institute; Christopher Sullivan, Seattle Children's Research Institute; Thomas Ward, Seattle Children's Research Institute; Ghayda Mirzaa, MD, University of Chicago; Brian O'Roak, PhD, University of Washington; Jay Shendure, MD, PhD, University of Washington; Mark O'Driscoll, PhD, University of Sussex; John Graham, MD, ScD, Cedars Sinai Medical Center; Kym Boycott, MD, PhD, University of Ottawa, Children's Hospital of Eastern Ontario; and many other physicians and scientists from North America and Europe.

Additional Resources

"De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes": http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.2331.html

"Researchers find gene for 9-year-old girl's 1-in-a-million disease", CommonHealth/WBUR, May 2012: http://commonhealth.wbur.org/2012/05/life-of-riley-gene-cloves

"Cause of rare growth disease discovered", MedicalXpress, June 2012: http://medicalxpress.com/news/2012-06-rare-growth-disease.html

"Gene Mutations Cause Massive Brain Asymmetry", UC San Diego Health System, June 2012: http://health.ucsd.edu/news/releases/Pages/2012-25-hemimegalencephaly.aspx

About Seattle Children's Research Institute

At the forefront of pediatric medical research, Seattle Children's Research Institute is setting new standards in pediatric care and finding new cures for childhood diseases. Internationally recognized scientists and physicians at the Research Institute are advancing new discoveries in cancer, genetics, immunology, pathology, infectious disease, injury prevention and bioethics. With Seattle Children's Hospital and Seattle Children's Hospital Foundation, the Research Institute brings together the best minds in pediatric research to provide patients with the best care possible. Children's serves as the primary teaching, clinical and research site for the Department of Pediatrics at the University of Washington School of Medicine, which consistently ranks as one of the best pediatric departments in the country. For more information, visit http://www.seattlechildrens.org/research.

Mary Guiden | EurekAlert!
Further information:
http://www.seattlechildrens.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>