Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds 'mad cow disease' in cattle can spread widely in ANS before detectable in CNS

09.07.2012
New pathway for infection reported in the American Journal of Pathology

Bovine spongiform encephalopathy (BSE, or "mad cow disease") is a fatal disease in cattle that causes portions of the brain to turn sponge-like. This transmissible disease is caused by the propagation of a misfolded form of protein known as a prion, rather than by a bacterium or virus.

The average time from infection to signs of illness is about 60 months. Little is known about the pathogenesis of BSE in the early incubation period. Previous research has reported that the autonomic nervous system (ANS) becomes affected by the disease only after the central nervous system (CNS) has been infected. In a new study published online in the August issue of The American Journal of Pathology, researchers found that the ANS can show signs of infection prior to involvement of the CNS.

"Our results clearly indicate that both pathways are involved in the early pathogenesis of BSE, but not necessarily simultaneously," reports lead investigator Martin H. Groschup, PhD, Institute for Novel and Emerging Infectious Diseases at the Friedrich-Loeffler-Institut, Riems, Germany.

To understand the pathogenesis of BSE, fifty-six calves between four and six months of age were infected orally with BSE from infected cattle. Eighteen calves were inoculated orally with BSE-negative material from calf brainstem as controls. The study also included samples collected from a calf that had died naturally of BSE. Tissue samples from the gut, the CNS, and the ANS were collected from animals every four months from 16 to 44 months after infection. The samples were examined for the presence of prions by immunohistochemistry. Samples were also used to infect experimental mice that are highly sensitive to a BSE infection.

A distinct accumulation of the pathological prion protein was observed in the gut in almost all samples. BSE prions were found in the sympathetic ANS system, located in the thoracic and lumbar spinal cord, starting at 16 months after infection; and in the parasympathetic ANS, located in the sacral region of the spinal cord and the medulla, from 20 months post infection. There was little or no sign of infection in the CNS in these samples. The sympathetic part of the ANS was more widely involved in the early pathogenesis than its parasympathetic counterpart. More bovines showing clinical symptoms revealed signs of infection in the sympathetic nervous system structures at a higher degree than in the parasympathetic tissue samples. The earliest detection of BSE prions in the brainstem was at 24 months post infection. However, infection detected in the spinal cord of one animal at 16 months post infection suggests the existence of an additional pathway to the brain.

"The clear involvement of the sympathetic nervous system illustrates that it plays an important role in the pathogenesis of BSE in cattle," notes Dr. Groschup. "Nevertheless, our results also support earlier research that postulated an early parasympathetic route for BSE."

The results, Dr. Groschup says, indicate three possible neuronal routes for the ascension of BSE prions to the brain: sympathetic, parasympathetic, and spinal cord projections, in order of importance. "Our study sheds light on the pathogenesis of BSE in cattle during the early incubation period, with implications for diagnostic strategies and food-safety measures."

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>