Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Studies of Gene Regulation in Brain Development May Mean New Treatment of Mental Disorders

04.12.2012
A team of researchers at the University of California, San Diego and the Institut Pasteur, Paris has come up with a novel way to describe a time-dependent brain development based on coherent–gene-groups (CGGs) and transcription-factors (TFs) hierarchy. The findings could lead to new drug designs for mental disorders such as autism-spectrum disorders (ASD) and schizophrenia.

In the paper, published November 22 as an online-first publication in the journal Genes, Brain and Behavior, the researchers identified the hierarchical tree of CGG–TF networks that determine the patterns of genes expressed during brain development and found that some “master transcription factors” at the top level of the hierarchy regulated the expression of a significant number of gene groups.

Instead of a taking the approach that a single gene creates a single response, researchers used contemporary methods of data analysis, along with the Gordon supercomputer at the university’s San Diego Supercomputer Center (SDSC), to identify CGGs responsible for brain development which can be affected for treatment of mental disorders. The team found that these groups of genes act in concert to send signals at various levels of the hierarchy to other groups of genes, which control the general and more specific (depending of the level) events in brain structure development.

“We have proposed a novel, though still hypothetical, strategy of drug design based on this hierarchical network of TFs that could pave the way for a new category of pharmacological agents that could be used to block a pathway at a critical time during brain development as an effective way to treat and even prevent mental disorders such as ASD and schizophrenia,” said lead author Igor Tsigelny, a research scientist with SDSC, as well as the university’s Moores Cancer Center and Department of Neurosciences. “On a broader scale, these findings have the potential to change the paradigm of drug design.”

Using samples taken from three different regions of the brains of rats, the researchers used Gordon and SDSC’s BiologicalNetworks server to conduct numerous levels of analysis, starting with processing of microarray data and SOM (self-organizing maps) clustering, before determining which gene zones were associated with significant developmental changes and brain disorders.

Researchers then conducted analyses of stages of development and quick comparisons between rat and human brain development, in addition to pathway analyses and functional and hierarchical network analyses. The team then analyzed specific gene–TF interactions, with a focus on neurological disorders, before investigating further directions for drug design based on analysis of the hierarchical networks.

Tsigelny’s collaborators included Valentina L. Kouzentsova (SDSC and Moores), Michael Baitaluk (SDSC); and Jean-Pierre Changeux, with the Institut Pasteur, in Paris, France. Changeux also is a Skaggs distinguished visiting professor in pharmacology at UC San Diego (2008) and a member of the foreign faculty at UC San Diego’s Kavli Institute for Brain and Mind. In addition to SDSC and its computational resources, support for the research paper, called A Hierarchical Coherent-Gene-Group Model for Brain Development, was provided by National Institutes of Health grant # GM084881 for Baitaluk.

Jan Zverina | Newswise Science News
Further information:
http://www.sdsc.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>