Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Invent Breakthrough Brain-Controlled Prosthetic Arm

31.03.2011
Two Ryerson University undergraduate biomedical engineering students are changing the world of medical prosthetics with a newly developed prosthetic arm that is controlled by brain signals.

The Artificial Muscle-Operated (AMO) Arm not only enables amputees more range of movement as compared to other prosthetic arms but it allows amputees to avoid invasive surgeries and could potentially save hundreds of thousands of dollars. The AMO Arm is controlled by the user’s brain signals and is powered by ‘artificial muscles’ - simple pneumatic pumps and valves - to create movements. In contrast, traditional prosthetic limbs – which typically offer more limited movements – rely on intricate and expensive electrical and mechanical components.

Developed by third-year student Thiago Caires and second-year student Michal Prywata, the AMO Arm is controlled by the brain and uses compressed air as the main source of power. The digital device makes use of signals in the brain that continue to fire even after a limb is amputated. Users wear a head-set that senses a signal – for example, the thought “up” – and sends it wirelessly to a miniature computer in the arm. The computer then compares the signal to others in a database. The resulting information is sent to the pneumatic system, which in turn, activates the arm to create the correct movement. Simulating the expansion and contraction of real muscles, the system makes use of compressed air from a small, refillable tank in the user’s pocket. The artificial muscle system created by Caires and Prywata is a first in the field of prosthetics and they continue to work on perfecting their system. For example, the pair is working on a design to fit the tank into the arm itself.

Since the device does not include microelectronics and motors, it costs one-quarter of other functional prosthetic arms, which can run users more than $80,000, depending on the complexity of the prosthesis. Other prosthetic arms with a similar degree of control require patients to undergo a complex muscle re-innervation surgery – a complicated procedure that costs about $300,000 and is not available in Canada and not covered by the provincial health plan. As the AMO Arm is non-invasive, the period of adjustment for new users is drastically decreased. While traditional prosthetics may require weeks of learning and training, basic function with the AMO Arm can be mastered in mere minutes.

“In just ten minutes of practising, a person can pick up the mind-control aspect of the technology,” says Prywata. Moreover, he says, the AMO Arm will not only benefit amputees, but could also be used as an assistive device on wheelchairs, enabling users to reach things with greater ease. The technology could also be used by the military to facilitate remote operations and in situations requiring robotics.

The initial concept for the AMO Arm was developed shortly after Caires and Prywata met at a Ryerson Engineering open house in fall 2009. Each showcased different projects and were impressed with the other’s work. It took a year to develop the software program for the AMO Arm while the actual prototype was created during a marathon 72-hour design session.

Caires and Prywata’s invention went on to win first prize at the 2011 Ryerson Engineering Competition, and took home first-place awards for innovative design and social awareness at the Ontario Engineering Competition in February. The wins at the provincial level qualified Caires and Prywata for the Canadian Engineering Competition, which was held earlier this month in Montreal. There, the AMO Arm placed second in the innovative design category.

Caires and Prywata are working to move each finger on the AMO Arm individually. “Independent finger movements require many more sensors,” Caires says. “For example, while not impossible, it’s still quite difficult to grab a key and unlock a door.”

In the future, the pair would also like the AMO Arm to sense different materials (e.g., an egg versus a full bottle of water) and adjust the force used proportionately. They have already developed an innovative concept for capacitive sensing which detects different materials prior to contact. The students also have plans to develop an adaptive system, one that will progressively “learn” from a user’s movements and carry them out seamlessly.

Although they are still students, Prywata and Caires are moving ahead on the commercialization of their innovations. They have formed their own company, Bionik Laboratories Inc. (www.bioniklabs.com), and are currently seeking three patents for the AMO Arm and their other technologies. Their recent acceptance into Ryerson’s home of innovation and commercialization: the Digital Media Zone (DMZ) will help them in achieving these goals.

Gaining residency in the DMZ (www.ryerson.ca/dmz) was a key move for their business which, while still quite recent, has already yielded positive results. “We were really impressed with the DMZ space initially, but didn’t know about all the resources at our disposal and the exposure it would afford us until we got here. The first day we arrived, we were meeting people, including CEOs and within a week we were shooting a piece for the Discovery Channel.” says Prywata.

Through their time at the DMZ, Bionik is hoping to build their business and create partnerships and connections with organizations such as the Ministry of Research and Innovation (MRI) and MaRS, which fund medical research and development. “Our backgrounds are not business, so we have been learning quickly from the people around us at the DMZ.”

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education. For more information, visit www.ryerson.ca

| Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>