Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong link found between concussions and brain tissue injury

26.08.2009
Imaging technique could speed diagnosis and improve outcomes

Concussions, whether from an accident, sporting event, or combat, can lead to permanent loss of higher level mental processes.

Scientists have debated for centuries whether concussions involve structural damage to brain tissue or whether physiological changes that merely impair the way brain cells function, explain this loss. Now, for the first time, researchers at Albert Einstein College of Medicine of Yeshiva University have linked areas of brain injury to specific altered mental processes caused by concussions.

The research, described in the August 26 edition of Radiology, provides compelling evidence that concussions involve brain damage. The findings suggest that diffusion tensor imaging (DTI), the brain scanning method used by the Einstein scientists, could help in diagnosing concussions and in assessing the effectiveness of treatments.

"DTI has been used to look at other brain disorders, but this is the first study to focus on concussions," said Michael Lipton, M.D., Ph.D., associate director of the Gruss Magnetic Resonance Research Center (MRRC) and associate professor of radiology, of psychiatry and behavioral sciences, and of neuroscience at Einstein and lead author of the study. "It proved to be a powerful tool for detecting the subtle brain damage that we found to be associated with concussions."

Each year, more than one million Americans sustain a concussion (technically referred to as mild traumatic brain injury). Concussions in adults result mainly from motor vehicle accidents or falls. While most people recover from concussions with no lasting ill effects, as many as 30 percent suffer permanent impairment — undergoing a personality change or being unable to plan an event. A 2003 federal study called concussions "a serious public health problem" that costs the U.S. an estimated $80 billion a year.

At present, diagnosis of concussions is based primarily on the patient's accident history and on clinical examinations that check for common concussion symptoms including headache, dizziness and behavioral abnormalities. There is no way of knowing from these exams who will suffer the most severe consequences and who will recover quickly. The results of the Einstein study indicates DTI scanning could provide a more objective way to diagnose concussions, determine whether brain injury has actually occurred following trauma, and possibly to predict the lasting loss of executive function. Executive function refers to the ability to make decisions, organize, set priorities and manage time.

The Einstein research involved 20 people known to have suffered concussions (18 from motor vehicle accidents and two from falls) and 20 healthy control subjects. The patients were recruited from one hospital emergency room; two of them had lost consciousness, but only for a few minutes. Both the patients and control subjects underwent conventional brain imaging with magnetic resonance (MR) and computed tomography (CT) scanning, plus a battery of neuropsychological tests to assess executive function, which is often impaired after a concussion. All concussion patients underwent brain imaging and testing within two weeks of their accidents.

Experienced reviewers who evaluated the conventional MR and CT images of patients and controls found no abnormalities in either group. However, the neuropsychological results showed that the patients performed significantly worse than the controls on tests of executive function.

Patients and controls also underwent diffusion tensor imaging (DTI), a recently developed MRI-based imaging technique that can detect subtle changes in the brain by measuring the diffusion of water in the brain's white matter. DTI revealed abnormal brain regions in 15 of the concussion patients, while no abnormal regions were found in controls. Most importantly, the presence of major areas of structural damage in concussion patients (as shown by large alterations in normal water diffusion using DTI) predicted low scores on their executive-function tests. These damaged areas were located mainly in the brain's prefrontal cortex, which is essential for normal executive function and is susceptible to injury in concussion.

Dr. Lipton notes that use of DTI could prompt doctors to begin treatment early, when it's likely to be most useful. "The problems in functioning caused by concussions often don't become evident until weeks or months after the injury, suggesting that the brain pathology may actually expand over time," he notes. "By detecting brain injury early with DTI and then initiating cognitive rehabilitation therapies for those patients, we may be able to limit the effects of concussions."

"We are really excited by these findings," indicates Craig Branch, Ph.D., a co-author of the study and director of the Gruss MRRC. "For the first time we appear to be able to identify the subtle pathology sometimes caused by concussion, providing researchers a 'pathology target' for the development of therapies to reduce or eliminate the damage identified by this novel imaging method." Dr. Lipton adds that DTI could help in evaluating the effectiveness of existing therapies for concussion.

The group's paper, "Diffusion tensor imaging implicates prefrontal axonal injury in executive dysfunction following mild traumatic brain injury," appears in the August 26 print edition of Radiology. In addition to Drs. Lipton and Branch, other Einstein scientists involved in the study were Edwin Gulko, Molly E. Zimmerman, Ph.D., Benjamin W. Friedman, M.D., Mimi Kim, Sc.D., Tamar Gold, and Keivan Shifteh, M.D.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is home to 2,775 faculty members, 625 M.D. students, 225 Ph.D. students, 125 students in the combined M.D./Ph.D. program, and 380 postdoctoral research fellows. In 2008, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving eight hospitals and medical centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.aecom.yu.edu

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>