Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke: When Helper Cells Become Harmful

16.11.2012
In case of strokes, the immune system contributes to the brain injury. In the prestigious journal BLOOD, scientists of the Universities of Würzburg and Münster now show for the first time in which way certain T helper cells are involved in the process.

The course of a stroke was previously described by scientists as follows: A blood vessel supplying the brain with oxygen and vital nutrients is suddenly blocked by a blood clot. This leads to a stroke, causing injury to the brain. As a result, many patients suffer from neurological dysfunctions, such as severe paralysis or speech disorders.


After a stroke, regulatory T cells (green) can be mainly identified in the cerebral vessels (red), where they interact with the vessel wall, clotting the respective blood vessel in the process (upper row of pictures). Accordingly, the cerebral blood flow (lower row of pictures) after a stroke is significantly higher in mice without regulatory T cells (right) than in normal mice (left). For measuring the cerebral blood flow, the animals were examined in an MRI scanner.
Picture: Christoph Kleinschnitz / Heinz Wiendl

"This picture must be supplemented by another important factor, namely the immune system," says Professor Christoph Kleinschnitz, head of stroke medicine at the University of Würzburg's Department of Neurology. He verified this in a joint project with the study group of Professor Heinz Wiendl at the University Hospital of Münster.

Regulatory T cells as culprits

The new insight was discovered in mice the immune system of which lacks regulatory T cells due to a genetic defect: The brain damage sustained by these mice after a stroke is reduced by about 75 percent as compared to normal mice. Furthermore, these mice develop significantly fewer neurological dysfunctions.

Regulatory T helper cells are an important part of the immune system and usually have the task of suppressing excessive immune responses of the body. Due to their regulatory properties, they play a protective role in many diseases, such as multiple sclerosis or rheumatism.

Paradigm shift in immunology

"The fact that regulatory T cells aggravate the brain damage to this extent in acute stroke cases came as a complete surprise to us," reports Heinz Wiendl, Director of the Department of Neurology, Division for Inflammatory Diseases of the Nervous System and Neuro-Oncology at the University Hospital of Münster: "We can say without exaggeration that this constitutes a paradigm shift from the perspective of immunology."

In their research, the immunologists also investigated with which mechanisms the regulatory T cells exacerbate the harmful effect of a stroke. They found out that this cell type interacts with platelets and blood vessel walls, especially in the early stages after a stroke. This worsens the clotting of the cerebral vessels, further reducing the cerebral blood flow.

The next studies

The scientists are now going to determine whether the results can be applied to humans. Should this be the case, strokes might be treated in future with drugs that affect regulatory T cells.

"This would represent a small medical revolution," says Kleinschnitz, for stroke is a widespread disease, having become the second leading cause of death worldwide. Effective therapies are scarce. "It will still take a series of further studies, however, to translate the discovery into an effective drug treatment," Kleinschnitz emphasizes.

Sponsors of the research

The studies were funded by the German Research Foundation (DFG) and by the Else Kröner-Fresenius Foundation. The DFG supported the research via the excellence cluster "Cells in motion" in Münster and the collaborative research center 688 in Würzburg.

"Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature", Christoph Kleinschnitz, Peter Kraft, Angela Dreykluft, Ina Hagedorn, Kerstin Göbel, Michael K Schuhmann, Friederike Langhauser, Xavier Helluy, Tobias Schwarz, Stefan Bittner, Christian T Mayer, Marc Brede, Csanad Varallyay, Mirko Pham, Martin Bendszus, Peter Jakob, Tim Magnus, Sven G Meuth, Yoichiro Iwakura, Alma Zernecke, Tim Sparwasser, Bernhard Nieswandt, Guido Stoll, Heinz Wiendl. Blood, published ahead of print November 15, 2012, doi:10.1182/blood-2012-04-426734

Contact persons

Prof. Dr. Christoph Kleinschnitz, Department of Neurology at the University Hospital of Würzburg, T (0931) 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

or Prof. Dr. Heinz Wiendl, Department of Neurology – Division for Inflammatory Diseases of the Nervous System and Neuro-Oncology, University Hospital of Münster, T (0251) 83-46810, heinz.wiendl@ukmuenster.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.ukmuenster.de

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>