Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke damage mechanism identified

28.11.2014

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims--and are now searching for drugs to block it.

Strokes happen when the blood supply to part of the brain is cut off but much of the harm to survivors' memory and other cognitive function is often actually caused by "oxidative stress" in the hours and days after the blood supply resumes.

A team from the University of Leeds and Zhejiang University in China studied this second phase of damage in laboratory mice and found a mechanism in neurons that, if removed, reduced the damage to brain function.

Co-author Dr Lin-Hua Jiang, of the University of Leeds' School of Biomedical Sciences, said: "Until now, much of the drug research has been focussing on the direct damage caused by the loss of blood flow, but this phase can be hard to target. The patient may not even be in the ambulance when it is happening. We have found a mechanism that is linked to the next phase of damage that will often be underway after patients have been admitted to hospital."

The study, published in the journal Cell Death and Disease and supported by a strategic partnership between the University of Leeds and Zhejiang University, looked at the damage caused by the excessive production of chemicals called "reactive oxygen species" in brain tissues immediately after blood supply is re-established. In a healthy brain, there are very low levels of reactive oxygen species, but the quantity dramatically increases after a stroke to levels that are harmful to neurons.

Dr Jiang said: "We identified an 'ion channel' in the membranes of neurons, called TRPM2, which is switched on in the presence of the reactive oxygen species. Basically, an ion channel is a door in the membrane of a cell that allows it to communicate with the outside world-- TRPM2 opens when the harmful levels of reactive oxygen species are present and we found that removing it significantly reduced neuronal cell damage."

The researchers compared the effects of strokes on mice with TRPM2 with a transgenic strain without it.

"In the mice in which the TRPM2 channel does not function, the reactive oxygen species are still produced but the neurons are very much protected. The neuronal death is significantly reduced. More importantly, we observed a significant difference in brain function, with the protected mice demonstrating significantly superior memory in lab tests," Dr Jiang said.

"This study has pinpointed a very promising drug target. We are now screening a large chemical library to find ways of effectively inhibiting this channel. Our ongoing research using animal models is testing whether blockage of this channel can offer protection again brain damage and cognitive dysfunction in stroke patients," Dr Jiang said.

The research was funded by the Royal Society, Alzheimer's Research UK, the Natural Science Foundation of China and the National Basic Research Program of China.

Further information:

Contact: Chris Bunting, Senior Press Officer, University of Leeds; phone: +44 113 343 2049 or email c.j.bunting@leeds.ac.uk.

The full paper: M. Ye et al,'TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient glo Q1 bal ischemia' will be published in Cell Death and Disease on 27 November 2014 [DOI:10.1038/CDDIS.2014.494; URL: http://dx.doi.org/10.1038/CDDIS.2014.494 ]. Copies of the paper are available on request from the University of Leeds press office.

Notes for Editors

The University of Leeds is one of the largest higher education institutions in the UK and a leading research powerhouse. It is a member of the Russell Group of research-intensive universities. The University was ranked in the top 100 of the world's best universities in the QS World University Rankings 2014. http://www.leeds.ac.uk

Alzheimer's Research UK is the UK's leading charity specialising in finding preventions, treatments and a cure for dementia. To help defeat dementia, donate today by visiting http://www.alzheimersresearchuk.org  or calling 0300 111 5555. Alzheimer's Research UK is currently supporting dementia research projects worth over £22 million in leading Universities across the UK. The Defeat Dementia campaign, a pledge to raise £100 million in five years to grow the research field and accelerate progress towards new treatments and preventions, was announced by the Prime Minister at the G8 legacy event on 19 June 2014. For more information visit http://www.dementiablog.org/defeat-dementia

Chris Bunting | EurekAlert!

Further reports about: TRPM2 blood supply brain function damage dementia identified levels neurons oxygen species species

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>