Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress takes its toll in Parkinson's disease

11.11.2010
Exhausted neurons die prematurely and trigger disease symptoms

We all know that living a stressful lifestyle can take its toll, making us age faster and making us more susceptible to the cold going around the office.

The same appears to be true of neurons in the brain. According to a new Northwestern Medicine study published Nov. 10 in the journal Nature, dopamine-releasing neurons in a region of the brain called the substantia nigra lead a lifestyle that requires lots of energy, creating stress that could lead to the neurons' premature death. Their death causes Parkinson's disease.

"Why this small group of neurons dies in Parkinson's disease is the core question we struggled with," says lead author D. James Surmeier, the Nathan Smith Davis Professor and chair of physiology at Northwestern University Feinberg School of Medicine. "Our research provides a potential answer by showing this small group of neurons uses a metabolically expensive strategy to do its job. This 'lifestyle' choice stresses the neurons' mitochondria and elevates the production of superoxide and free radicals – molecules closely linked to aging, cellular dysfunction and death."

The good news is preclinical research shows this stress can be controlled with a drug already approved for human use. By preventing calcium entry, the drug isradipine reduced the mitochondrial stress in dopamine-releasing neurons to the levels seen in neurons not affected by the disease.

Northwestern Medicine scientists currently are conducting a clinical trial to find out if isradipine can be used safely and is tolerated by patients with Parkinson's. Isradipine is already approved by the Food and Drug Administration for treatment of high blood pressure.

Parkinson's disease is the second most common neurodegenerative disease in the United States, second only to Alzheimer's disease. The average age of diagnosis is near 60. More than 1 million Americans currently have Parkinson's disease, and this number is rising as the population ages. The symptoms of Parkinson's disease include rigidity, slowness of movement and tremors. No treatment currently is known to prevent or slow the progression of Parkinson's disease.

Although most cases of Parkinson's disease have no known genetic link, Surmeier's study in mice showed that the mitochondrial stress in dopamine-releasing neurons was worsened in a genetic model of early-onset Parkinson's disease, suggesting a similar mechanism in rare familial forms of the disease and the more common forms.

Everyone loses dopamine-releasing neurons with age, Surmeier noted. "By lowering their metabolic stress level, we should be able to make dopamine-releasing neurons live longer and delay the onset of Parkinson's disease," he said. "For individuals diagnosed with Parkinson's disease, the hope is that this drug can slow disease progression, giving symptomatic therapies a broader window in which to work."

The study was supported by the National Institutes of Health, United States Department of Defense, Thomas Hartman Foundation For Parkinson's Research, Inc., The Picower Foundation and Dr. Ralph and Marian Falk Medical Research Trust.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>