Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress takes its toll in Parkinson's disease

11.11.2010
Exhausted neurons die prematurely and trigger disease symptoms

We all know that living a stressful lifestyle can take its toll, making us age faster and making us more susceptible to the cold going around the office.

The same appears to be true of neurons in the brain. According to a new Northwestern Medicine study published Nov. 10 in the journal Nature, dopamine-releasing neurons in a region of the brain called the substantia nigra lead a lifestyle that requires lots of energy, creating stress that could lead to the neurons' premature death. Their death causes Parkinson's disease.

"Why this small group of neurons dies in Parkinson's disease is the core question we struggled with," says lead author D. James Surmeier, the Nathan Smith Davis Professor and chair of physiology at Northwestern University Feinberg School of Medicine. "Our research provides a potential answer by showing this small group of neurons uses a metabolically expensive strategy to do its job. This 'lifestyle' choice stresses the neurons' mitochondria and elevates the production of superoxide and free radicals – molecules closely linked to aging, cellular dysfunction and death."

The good news is preclinical research shows this stress can be controlled with a drug already approved for human use. By preventing calcium entry, the drug isradipine reduced the mitochondrial stress in dopamine-releasing neurons to the levels seen in neurons not affected by the disease.

Northwestern Medicine scientists currently are conducting a clinical trial to find out if isradipine can be used safely and is tolerated by patients with Parkinson's. Isradipine is already approved by the Food and Drug Administration for treatment of high blood pressure.

Parkinson's disease is the second most common neurodegenerative disease in the United States, second only to Alzheimer's disease. The average age of diagnosis is near 60. More than 1 million Americans currently have Parkinson's disease, and this number is rising as the population ages. The symptoms of Parkinson's disease include rigidity, slowness of movement and tremors. No treatment currently is known to prevent or slow the progression of Parkinson's disease.

Although most cases of Parkinson's disease have no known genetic link, Surmeier's study in mice showed that the mitochondrial stress in dopamine-releasing neurons was worsened in a genetic model of early-onset Parkinson's disease, suggesting a similar mechanism in rare familial forms of the disease and the more common forms.

Everyone loses dopamine-releasing neurons with age, Surmeier noted. "By lowering their metabolic stress level, we should be able to make dopamine-releasing neurons live longer and delay the onset of Parkinson's disease," he said. "For individuals diagnosed with Parkinson's disease, the hope is that this drug can slow disease progression, giving symptomatic therapies a broader window in which to work."

The study was supported by the National Institutes of Health, United States Department of Defense, Thomas Hartman Foundation For Parkinson's Research, Inc., The Picower Foundation and Dr. Ralph and Marian Falk Medical Research Trust.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>