Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress may hasten the growth of melanoma tumors

02.02.2009
For patients with a particularly aggressive form of skin cancer – malignant melanoma – stress, including that which comes from simply hearing that diagnosis, might amplify the progression of their disease.

But the same new research that infers this also suggests that the use of commonly prescribed blood pressure medicines might slow the development of those tumors and therefore improve these patients’ quality of life.

The study, the third by Ohio State University scientists in the last two years that looked for links between stress hormones and diseases like cancer, is published in the the journal Brain, Behavior and Immunity.

Eric V. Yang, a research scientist at the Institute for Behavioral Medicine Research (IBMR), exposed samples of three melanoma cell lines to the compound norepinephrine, a naturally occurring catecholamine that functions as a stress hormone. In times of increased stress, levels of norepinephrine increase in the bloodstream.

Yang and colleague Ronald Glaser were looking for changes in the levels of three proteins released by the cells. Glaser is a professor of molecular virology, immunology and medical genetics, member of the university’s Comprehensive Cancer Center and director of the IBMR.

One of the proteins – vascular endothelial growth factor, or VEGF – plays a key role in stimulating the growth of new blood vessels needed to feed a growing tumor, a process called angiogenesis. The other two proteins, Interleukin-6 and Interleukin-8, are both involved in fostering tumor growth.

All three of the cell lines were grown from tissues taken from secondary tumors that had metastasized from a primary site and they signify aggressive forms of cancer. But one of them – C8161 – represented the most aggressive and advanced form of melanoma.

“We noticed that all three of these proteins increased in response to the norepinephrine,” Yang explained, adding that in the C8161 cells, “we got a 2,000 percent increase in IL-6. In untreated samples from this cell line, you normally can’t detect any IL-6 at all.

“What this tells us is that stress might have a worse effect on melanoma that is in a very aggressive or advanced stage, and that one marker for that might be increased levels of IL-6,” he said.

The researchers ruled out cell proliferation – an increase in the number of cells present – as a reason for the increase in all three proteins. That meant that the only other answer was that the cells were increasing their expression of the genes responsible for producing these compounds.

The researchers showed that the norepinephrine molecule binds to receptors on the surface of cancer cells and once this linkage occurs, it stimulates the release of the proteins that support angiogenesis and tumor growth.

Yang and Glaser first confirmed that the receptors were present on cells in all three cell lines and then tested what would happen when the receptors were blocked by common blood pressure medicine – the so-called “beta-blockers.”

When the beta-blockers did bind to the receptors, the production of the three proteins reduced significantly, suggesting that in patients with melanoma, using these types of medications might be used to slow the progression of the disease in patients.

While the study was restricted to tumor cell lines, rather than using animal models or human patients, the findings are still exciting. The researchers found strong evidence that the same receptors are expressed on the surface of tumor cells from biopsies that were taken from melanoma patients. That supports the clinical importance of the results.

Two earlier studies on different tumor cell lines – one prepared from a multiple myeloma and the other from a nasopharyngeal carcinoma – also showed that exposure to norepinephrine increased the levels of proteins responsible for accelerating tumor growth.

The research is showing not only that different forms of cancer react differently to stress hormones but also that those reactions can vary within a specific form of the disease, with the possibility of a more aggressive form of the disease reacting more strongly to the stressors.

For melanoma patients, that can be very important since these tumors are able to metastasize, or spread, when they are much smaller than most other solid cancers. The American Cancer Society estimates that nearly 48,000 cases of melanoma are diagnosed each year and nearly 8,000 people are killed each year by the disease.

This research was supported in part by the National Cancer Institute. Other collaborators in the study included Sanford Barsky, professor and chair of pathology; and IBMR members Elise Donovan, Min Chen, Amy Gross, Jeanette Webster Marketon and Seung-jae Kim.

Contact: Eric V. Yang, (614) 292-0364; yang.3@osu.edu or Ronald Glaser, (614) 292-5526; glaser.1@osu.edu.

Written by Earle Holland, (614) 292-8384; holland.8@osu.edu

Ronald Glaser | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>