Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stress may hasten the growth of melanoma tumors

For patients with a particularly aggressive form of skin cancer – malignant melanoma – stress, including that which comes from simply hearing that diagnosis, might amplify the progression of their disease.

But the same new research that infers this also suggests that the use of commonly prescribed blood pressure medicines might slow the development of those tumors and therefore improve these patients’ quality of life.

The study, the third by Ohio State University scientists in the last two years that looked for links between stress hormones and diseases like cancer, is published in the the journal Brain, Behavior and Immunity.

Eric V. Yang, a research scientist at the Institute for Behavioral Medicine Research (IBMR), exposed samples of three melanoma cell lines to the compound norepinephrine, a naturally occurring catecholamine that functions as a stress hormone. In times of increased stress, levels of norepinephrine increase in the bloodstream.

Yang and colleague Ronald Glaser were looking for changes in the levels of three proteins released by the cells. Glaser is a professor of molecular virology, immunology and medical genetics, member of the university’s Comprehensive Cancer Center and director of the IBMR.

One of the proteins – vascular endothelial growth factor, or VEGF – plays a key role in stimulating the growth of new blood vessels needed to feed a growing tumor, a process called angiogenesis. The other two proteins, Interleukin-6 and Interleukin-8, are both involved in fostering tumor growth.

All three of the cell lines were grown from tissues taken from secondary tumors that had metastasized from a primary site and they signify aggressive forms of cancer. But one of them – C8161 – represented the most aggressive and advanced form of melanoma.

“We noticed that all three of these proteins increased in response to the norepinephrine,” Yang explained, adding that in the C8161 cells, “we got a 2,000 percent increase in IL-6. In untreated samples from this cell line, you normally can’t detect any IL-6 at all.

“What this tells us is that stress might have a worse effect on melanoma that is in a very aggressive or advanced stage, and that one marker for that might be increased levels of IL-6,” he said.

The researchers ruled out cell proliferation – an increase in the number of cells present – as a reason for the increase in all three proteins. That meant that the only other answer was that the cells were increasing their expression of the genes responsible for producing these compounds.

The researchers showed that the norepinephrine molecule binds to receptors on the surface of cancer cells and once this linkage occurs, it stimulates the release of the proteins that support angiogenesis and tumor growth.

Yang and Glaser first confirmed that the receptors were present on cells in all three cell lines and then tested what would happen when the receptors were blocked by common blood pressure medicine – the so-called “beta-blockers.”

When the beta-blockers did bind to the receptors, the production of the three proteins reduced significantly, suggesting that in patients with melanoma, using these types of medications might be used to slow the progression of the disease in patients.

While the study was restricted to tumor cell lines, rather than using animal models or human patients, the findings are still exciting. The researchers found strong evidence that the same receptors are expressed on the surface of tumor cells from biopsies that were taken from melanoma patients. That supports the clinical importance of the results.

Two earlier studies on different tumor cell lines – one prepared from a multiple myeloma and the other from a nasopharyngeal carcinoma – also showed that exposure to norepinephrine increased the levels of proteins responsible for accelerating tumor growth.

The research is showing not only that different forms of cancer react differently to stress hormones but also that those reactions can vary within a specific form of the disease, with the possibility of a more aggressive form of the disease reacting more strongly to the stressors.

For melanoma patients, that can be very important since these tumors are able to metastasize, or spread, when they are much smaller than most other solid cancers. The American Cancer Society estimates that nearly 48,000 cases of melanoma are diagnosed each year and nearly 8,000 people are killed each year by the disease.

This research was supported in part by the National Cancer Institute. Other collaborators in the study included Sanford Barsky, professor and chair of pathology; and IBMR members Elise Donovan, Min Chen, Amy Gross, Jeanette Webster Marketon and Seung-jae Kim.

Contact: Eric V. Yang, (614) 292-0364; or Ronald Glaser, (614) 292-5526;

Written by Earle Holland, (614) 292-8384;

Ronald Glaser | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>